

MOSFET - N-Channel, POWERTRENCH®

100 V, 50 A, 15 m Ω

FDP150N10A

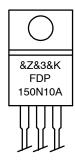
Description

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Features

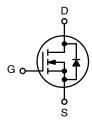
- $R_{DS(on)} = 12.5 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$
- Fast Switching Speed
- Low Gate Charge, $Q_G = 16.2 \text{ nC (Typ.)}$
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- RoHS Compliant

Applications


- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

V _{DSS}	R _{DS(on)} MAX	I _D MAX
100 V	15.0 mΩ @ 10 V	50 A

TO-220 CASE 221A


MARKING DIAGRAM

&Z = Assembly Plant Code &3 = 3-Digit Date Code Format

&K = 2-Digits Lot Run Traceability Code

FDP150N10A = Device Code

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

Downloaded from Arrow.com.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25$ °C unless otherwise noted)

Symbol	Parameter	FDP150N10A_F102	Unit	
V _{DSS}	Drain to Source Voltage	100	V	
V _{GSS}	Gate to Source Voltage	±20	V	
I _D	Drain Current	– Continuous (T _C = 25°C)	50	Α
		- Continuous (T _C = 100°C)		
I _{DM}	Drain Current - Pulsed (Note 1)		200	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	84.6	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		6.0	V/ns
P _D	Power Dissipation	(T _C = 25°C)	91	W
	- Derate Above 25°C		0.61	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +175	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Repetitive rating: pulse–width limited by maximum junction temperature.
2. L = 2 mH, I_{AS} = 9.2 A, R_{G} = 25 Ω , starting T_{J} = 25°C.
3. $I_{SD} \le 100$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, starting T_{J} = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDP150N10A_F102	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	1.6	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS	•				-
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	_	_	V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	0.08	=	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	1	μΑ
		V _{DS} = 80 V, T _C = 150°C	-	-	500	1
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	-	±100	nA
ON CHARAC	CTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	-	4.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 50 A	-	12.5	15.0	mΩ
9FS	Forward Transconductance	V _{DS} = 10 V, I _D = 50 A	-	40	_	S
DYNAMIC C	HARACTERISTICS	•				-
C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	-	1080	1440	pF
C _{oss}	Output Capacitance		_	267	355	pF
C _{rss}	Reverse Transfer Capacitance		_	11	_	pF
C _{oss(er)}	Energy Related Output Capacitance	V _{DS} = 50 V, V _{GS} = 0 V	-	436	_	pF
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 50 V, V _{GS} = 10 V, I _D = 50 A,	-	16.2	21.0	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	_	5.3	_	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	2.6	_	nC
Q _{gd}	Gate to Drain "Miller" Charge		_	3.7	_	nC
ESR	Equivalent Series Resistance (G-S)	f = 1 MHz	-	1.3	_	Ω
SWITCHING	CHARACTERISTICS	•				-
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, I_D = 50 \text{ A}, V_{GS} = 10 \text{ V},$	-	13	36	ns
t _r	Turn-On Rise Time	$R_G = 4.7 \Omega$ (Note 4)	_	16	42	ns
t _{d(off)}	Turn-Off Delay Time		_	21	52	ns
t _f	Turn-Off Fall Time	\neg	_	5	20	ns
DRAIN-SOL	IRCE DIODE CHARACTERISTICS	·	-	-	-	
I _S	Maximum Continuous Drain to Source Diode Forward Current			_	50	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	200	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 50 A	-	-	1.3	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, V_{DD} = 50 \text{ V}, I_{SD} = 50 \text{ A},$	-	50	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	_	55	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

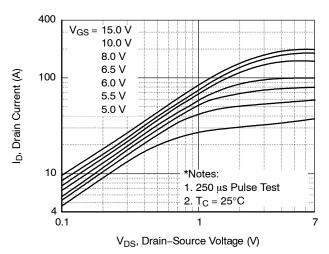


Figure 1. On-Region Characteristics

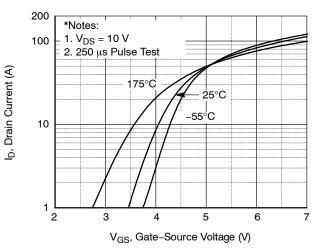


Figure 2. Transfer Characteristics

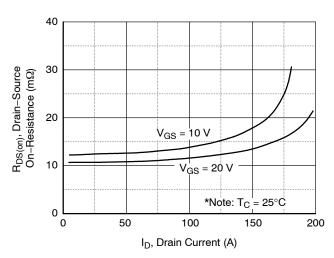


Figure 3. On–Resistance Variation vs. Drain Current and Gate Voltage

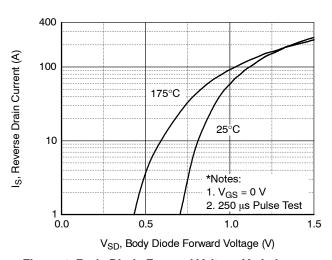


Figure 4. Body Diode Forward Voltage Variation vs.
Source Current and Temperature

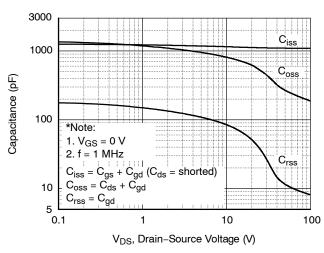


Figure 5. Capacitance Characteristics

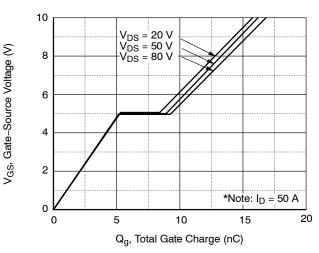


Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

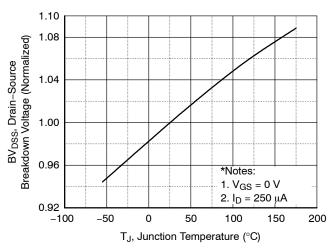


Figure 7. Breakdown Voltage Variation vs. Temperature

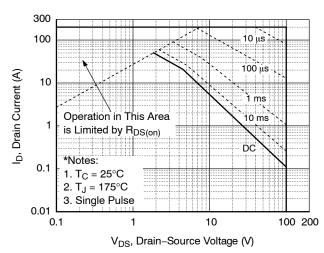


Figure 9. Maximum Safe Operating Area

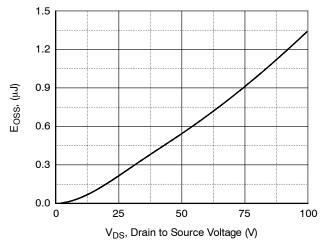


Figure 11. Eoss vs. Drain to Source Voltage

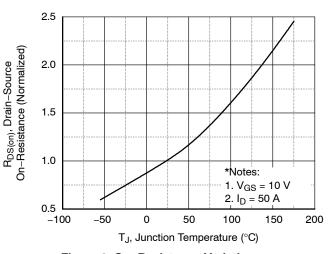


Figure 8. On–Resistance Variation vs.
Temperature

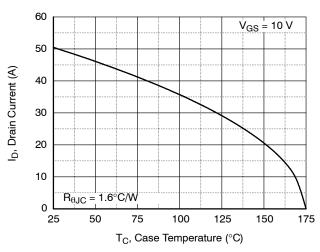


Figure 10. Maximum Drain Current vs. Case Temperature

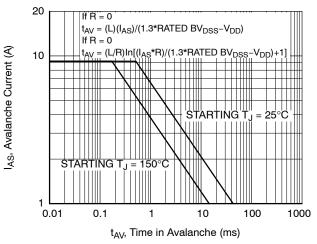


Figure 12. Unclamped Inductive Switching Capability

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

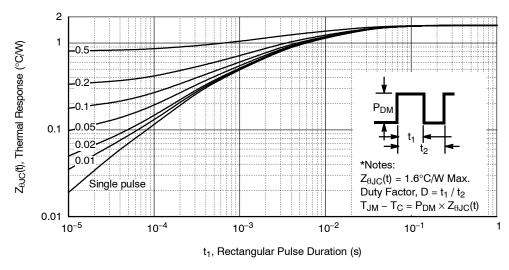


Figure 13. Transient Thermal Response Curve

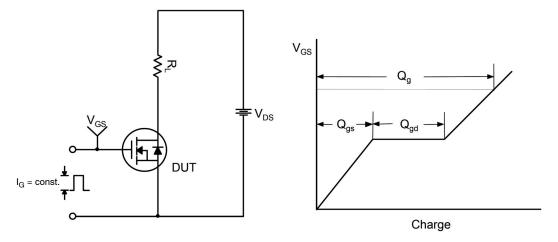


Figure 14. Gate Charge Test Circuit & Waveform



Figure 15. Resistive Switching Test Circuit & Waveforms

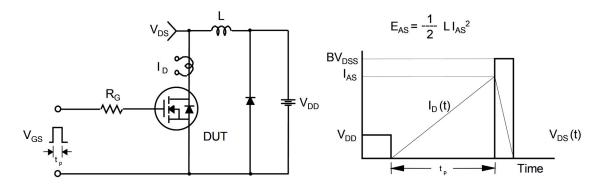
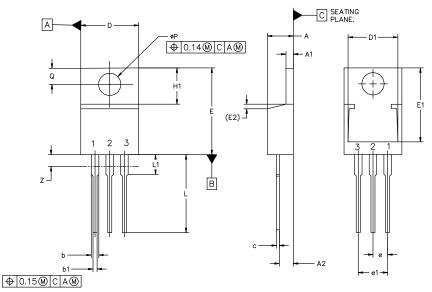


Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms

Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

ORDERING INFORMATION

Part Number	Device Marking	Package	Reel Size	Tape Width	Shipping
FDP150N10A-F102	FDP150N10A	TO-220	N/A	N/A	800 Units / Tube


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

TO-220-3 10.10x15.12x4.45, 2.54P CASE 221A **ISSUE AL**

DATE 05 FEB 2025

MILLIMETERS						
DIM	MIN	NOM	MAX			
А	4.07	4.45	4.83			
A1	1.15	1.28	1.41			
A2	2.04	2.42	2.79			
b	1.15	1.34	1.52			
b1	0.64	0.80	0.96			
С	0.36	0.49	0.61			
D	9.66	10.10	10.53			
D1	8.43	8.63	8.83			
E	14.48	15.12	15.75			
E1	12.58	12.78	12.98			
E2	1.27 REF					

MILLIMETERS						
DIM	MIN	NOM	MAX			
е	2.42	2.54	2.66			
e1	4.83	5.08	5.33			
H1	5.97	6.22	6.47			
L	12.70	13.49	14.27			
L1	2.80	3.45	4.10			
Q	2.54	2.79	3.04			
ØΡ	3.60	3.85	4.09			
Z			3.48			

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	EMITTER	2.	ANODE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	COLLECTOR	3.	GATE	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE	4.	MAIN TERMINAL 2
STYLE 5:		STYLE 6:		STYLE 7:		STYLE 8:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE	3.	EXTERNAL TRIP/DELAY
4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11:		STYLE 12	:
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	SOURCE	2.	SOURCE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	DRAIN	3.	GATE	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE	4.	NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220-3 10.10x15.12x4.45, 2.54P		PAGE 1 OF 1		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

