MOSFET – Power, N-Channel, SUPERFET[®] III, Automotive, Easy-drive 650 V, 24 A, 125 mΩ # NVB125N65S3 #### **Description** SUPERFET III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provides superior switching performance, and withstand extreme dv/dt rate. Consequently, SUPERFET III MOSFET Easy drive series helps manage EMI issues and allows for easier design implementation. #### **Features** - AEC-Q101 Qualified - 700 V @ $T_J = 150$ °C - Typ. $R_{DS(on)} = 105 \text{ m}\Omega$ - Ultra Low Gate Charge (Typ. Q_g = 46 nC) - Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 439 pF) - 100% Avalanche Tested - These Devices are Pb-Free and are RoHS Compliant #### **Applications** - Automotive On Board Charger - Automotive DC/DC Converter for HEV ## ON Semiconductor® #### www.onsemi.com | V _{DSS} | R _{DS(ON)} MAX | I _D MAX | |------------------|-------------------------|--------------------| | 650 V | 125 mΩ @ 10 V | 24 A | **POWER MOSFET** D²PAK CASE 418AJ #### MARKING DIAGRAM \$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week) &K = Lot NVB125N65S3 = Specific Device Code #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 2 of this data sheet. ## **ABSOLUTE MAXIMUM RATINGS** ($T_C = 25^{\circ}C$, Unless otherwise noted) | Symbol | Parameter | Value | Unit | | |-----------------------------------|--|---------------------------------------|-------------|------| | V _{DSS} | Drain to Source Voltage | | 650 | V | | V _{GSS} | Gate to Source Voltage | - DC | ±30 | V | | | | – AC (f > 1 Hz) | ±30 | | | I _D | Drain Current | – Continuous (T _C = 25°C) | 24 | Α | | | | – Continuous (T _C = 100°C) | 15 | | | I _{DM} | Drain Current | - Pulsed (Note 1) | 60 | Α | | E _{AS} | Single Pulsed Avalanche Energy (Note 2) | | 115 | mJ | | I _{AS} | Avalanche Current (Note 2) | | 3.7 | Α | | E _{AR} | Repetitive Avalanche Energy (Note 1) | | 1.81 | mJ | | dv/dt | MOSFET dv/dt Peak Diode Recovery dv/dt (Note 3) | | 100 | V/ns | | | | | 20 | | | P_{D} | Power Dissipation | (T _C = 25°C) | 181 | W | | | | - Derate Above 25°C | 1.45 | W/°C | | T _J , T _{STG} | Operating and Storage Temperature Range | | -55 to +150 | °C | | TL | Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds | | 300 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Repetitive rating: pulse–width limited by maximum junction temperature. 2. $I_{AS}=3.7~A,~R_{G}=25~\Omega,$ starting $T_{J}=25^{\circ}C.$ 3. $I_{SD}\leq 12~A,~di/dt\leq 200~A/\mu s,~V_{DD}\leq 400~V,$ starting $T_{J}=25^{\circ}C.$ #### THERMAL CHARACTERISTICS | Symbol | Parameter | Value | Unit | |----------------|---|-------|------| | $R_{ heta JC}$ | Thermal Resistance, Junction to Case, Max. | 0.69 | °C/W | | $R_{ heta JA}$ | Thermal Resistance, Junction to Ambient, Max. | 40 | | ## PACKAGE MARKING AND ORDERING INFORMATION | Part Number | Top Marking | Package | Reel Size | Tape Width | Shipping [†] | |-------------|-------------|---------------------|-----------|------------|-----------------------| | NVB125N65S3 | NVB125N65S3 | D ² -PAK | 330 mm | 24 mm | 800 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------------------|--|--|------|------|----------|------| | OFF CHARACT | ERISTICS | | - | - | <u>-</u> | - | | BV _{DSS} | Drain to Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$ | 650 | | | V | | | | V _{GS} = 0 V, I _D = 1 mA, T _J = 150°C | 700 | | | V | | $\Delta BV_{DSS} / \Delta T_{J}$ | Breakdown Voltage Temperature
Coefficient | I _D = 1 mA, Referenced to 25°C | | 0.68 | | V/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 650 V, V _{GS} = 0 V | | | 1 | μΑ | | | | V _{DS} = 520 V, T _C = 125°C | | 1.35 | | | | I _{GSS} | Gate to Body Leakage Current | $V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$ | | | ±100 | nA | | ON CHARACTE | RISTICS | | | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{GS} = V_{DS}, I_D = 0.59 \text{ mA}$ | 2.5 | | 4.5 | V | | R _{DS(on)} | Static Drain to Source On Resistance | V _{GS} = 10 V, I _D = 12 A | | 105 | 125 | mΩ | | 9FS | Forward Transconductance | V _{DS} = 20 V, I _D = 12 A | | 16 | | S | | DYNAMIC CHAI | RACTERISTICS | | | | | | | C _{iss} | Input Capacitance | V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz | | 1940 | | pF | | C _{oss} | Output Capacitance | | | 40 | | pF | | C _{oss(eff.)} | Effective Output Capacitance | V _{DS} = 0 V to 400 V, V _{GS} = 0 V | | 439 | | pF | | C _{oss(er.)} | Energy Related Output Capacitance | V _{DS} = 0 V to 400 V, V _{GS} = 0 V | | 62 | | pF | | Q _{g(tot)} | Total Gate Charge at 10 V | V _{DS} = 400 V, I _D = 12 A, V _{GS} = 10 V | | 46 | | nC | | Q_{gs} | Gate to Source Gate Charge | (Note 4) | | 12 | | nC | | Q_{gd} | Gate to Drain "Miller" Charge | | | 19 | | nC | | ESR | Equivalent Series Resistance | f = 1 MHz | | 0.5 | | Ω | | SWITCHING CH | IARACTERISTICS | | | | | | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = 400 \text{ V}, I_D = 12 \text{ A}, V_{GS} = 10 \text{ V},$ | | 21 | | ns | | t _r | Turn-On Rise Time | $R_g = 4.7 \Omega$ (Note 4) | | 19 | | ns | | t _{d(off)} | Turn-Off Delay Time | | | 48 | | ns | | t _f | Turn-Off Fall Time | | | 4.6 | | ns | | SOURCE-DRAII | N DIODE CHARACTERISTICS | | | | • | | | I _S | Maximum Continuous Source to Drain Diode Forward Current | | | | 24 | Α | | I _{SM} | Maximum Pulsed Source to Drain Diode Forward Current | | | | 60 | Α | | V _{SD} | Source to Drain Diode Forward Voltage | V _{GS} = 0 V, I _{SD} = 12 A | | | 1.2 | V | | t _{rr} | Reverse Recovery Time | V _{DD} = 400 V, I _{SD} = 12 A, | | 339 | | ns | | Q _{rr} | Reverse Recovery Charge | dI _F /dt = 100 A/μs | | 5.7 | | μС | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics. #### **TYPICAL CHARACTERISTICS** Figure 1. On–Region Characteristics 25°C Figure 3. Transfer Characteristics Figure 5. Body Diode Forward Voltage Variation vs. Source Current and Temperature V_{DS}, DRAIN-SOURCE VOLTAGE (V) Figure 2. On–Region Characteristics 150°C Figure 4. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 6. Capacitance Characteristics #### **TYPICAL CHARACTERISTICS** Figure 7. Gate Charge Characteristics Figure 8. Breakdown Voltage Variation vs. **Temperature** Figure 9. On-Resistance Variation vs. **Temperature** Figure 10. Maximum Safe Operating Area Figure 11. Maximum Drain Current vs. Case **Temperature** Figure 12. E_{OSS} vs. Drain-to-Source Voltage #### **TYPICAL CHARACTERISTICS** Figure 13. Normalized Power Dissipation vs. Case Temperature Figure 14. Peak Current Capability Figure 15. R_{DS(on)} vs. Gate Voltage Figure 16. Normalized Gate Threshold Voltage vs. Temperature Figure 17. Transient Thermal Response Figure 18. Gate Charge Test Circuit & Waveform Figure 19. Resistive Switching Test Circuit & Waveforms Figure 20. Unclamped Inductive Switching Test Circuit & Waveforms Figure 21. Peak Diode Recovery dv/dt Test Circuit & Waveforms SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. 0.653 2x 0.063 #### D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ ISSUE F **DATE 11 MAR 2021** #### NOTES 0.366 0.169 0.100 PITCH - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - 2. CONTROLLING DIMENSION: INCHES - 3. CHAMFER OPTIONAL. - 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H. - 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1. - 6. OPTIONAL MOLD FEATURE. - 7. ①,② ... OPTIONAL CONSTRUCTION FEATURE CALL DUTS. | | INCHES | | MILLIN | ETERS | |-----|-----------|-------|----------|-------| | DIM | MIN. | MAX. | MIN. | MAX. | | A | 0.160 | 0.190 | 4.06 | 4.83 | | A1 | 0.000 | 0.010 | 0.00 | 0.25 | | ھ | 0.020 | 0.039 | 0.51 | 0.99 | | u | 0.012 | 0.029 | 0.30 | 0.74 | | 5 | 0.045 | 0.065 | 1.14 | 1.65 | | D | 0.330 | 0.380 | 8.38 | 9.65 | | D1 | 0.260 | | 6.60 | | | E | 0.380 | 0.420 | 9.65 | 10.67 | | E1 | 0.245 | - | 6.22 | | | e | 0.100 | BSC | 2.54 BSC | | | Ξ | 0.575 | 0.625 | 14.60 | 15.88 | | ٦ | 0.070 | 0.110 | 1.78 | 2.79 | | L1 | | 0.066 | | 1.68 | | L2 | | 0.070 | | 1.78 | | L3 | 0.010 BSC | | 0.25 BSC | | | М | 0, 8, | | 0* | 8* | RECOMMENDED MOUNTING FOOTPRINT XXXXXXXX IC **AWLYWWG** VIEW A-A **GENERIC MARKING DIAGRAMS*** VIEW A-A OPTIONAL CONSTRUCTIONS AYWW XXXXXXXXX Rectifier **AKA** # TIDNAL CONSTRUCTIONS A XXXXXX **XXYMW** SSG XXXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot Y = Year WW = Work Week W = Week Code (SSG) M = Month Code (SSG) G = Pb-Free Package G = Pb-Free Package AKA = Polarity Indicator *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking. #### DOCUMENT NUMBER: 98AON56370E Standard XXXXXXXX **AYWW** Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. DESCRIPTION: D²PAK-3 (TO-263, 3-LEAD) PAGE 1 OF 1 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales