IGBT - Field Stop, Trench

75 A, 650 V

FGHL75T65LQDT

Description

Field stop 4th generation Low Vce(sat) IGBT technology and Full current rated copak Diode technology.

Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.15 \text{ V (Typ.)} @ I_C = 75 \text{ A}$
- 100% Of The Part Are Tested For I_{LM} (Note 2)
- Smooth & Optimized Switching
- Tight Parameter Distribution
- Co-Packed With Soft And Fast Recovery Diode
- RoHS Compliant

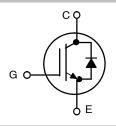
Typical Applications

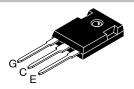
- Solar Inverter
- UPS, ESS
- PFC, Converters

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector to Emitter Voltage	V _{CES}	650	V
Gate to Emitter Voltage	V_{GES}	±20	V
Transient Gate to Emitter Voltage		±30	
Collector Current @ T _C = 25°C (Note 1)	I _C	80	Α
Collector Current @ T _C = 100°C		75	
Pulsed Collector Current (Note 2)	I _{LM}	300	Α
Pulsed Collector Current (Note 3)	I _{CM}	300	Α
Diode Forward Current @ T _C = 25°C (Note 1)	Ι _F	80	Α
Diode Forward Current @ T _C = 100°C		75	
Pulsed Diode Maximum Forward Current	I _{FM}	300	Α
Maximum Power Dissipation @ T _C = 25°C	P_{D}	469	W
Maximum Power Dissipation @ T _C = 100°C		234	
Operating Junction Temperature / Storage Temperature Range	T _J , T _{STG}	-55 to +175	°C
Maximum Lead Temp. For soldering Purposes, 1/8" from case for 5 seconds	T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Value limit by bond wire.
- 2. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 300 A, Inductive Load, 100% Tested. 3. Repetitive rating: pulse width limited by max. Junction temperature.



ON Semiconductor®

www.onsemi.com

V _{CES}	lc	V _{CE(Sat)}
650 V	75 A	1.15 V

TO-247-3L CASE 340CX

MARKING DIAGRAM

= ON Semiconductor Logo \$Y &Z = Assembly Plant Code &3 = 3-Digit Data Code = 2-Digit Lot Traceability Code

ORDERING INFORMATION

FGHL75T65LQDT = Specific Device Code

Device	Package	Shipping
FGHL75T65LQDT	TO-247-3L	30 Units / Rail

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Units
Thermal Resistance Junction to Case, for IGBT	$R_{ heta JC}$	0.32	°C/W
Thermal Resistance Junction to Case, for Diode	$R_{ heta JC}$	0.6	°C/W
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	40	°C/W

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•	•		•
Collector-emitter Breakdown Voltage, Gate-emitter Short-circuited	V _{GE} = 0 V, I _C = 1mA	BV _{CES}	650	-	-	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1mA	ΔBV _{CES} /ΔΤ _J	-	0.6	-	V/°C
Collector-emitter Cut-off Current, Gate-emitter Short-circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	-	250	μΑ
Gate Leakage Current, Collector-emitter Short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTICS						
Gate-emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 75$ mA	V _{GE(th)}	3.0	4.5	6.0	V
Collector-emitter Saturation Voltage	V _{GE} = 15 V, I _C = 75 A, T _J = 25°C	V _{CE(sat)}	-	1.15	1.35	V
	V _{GE} = 15 V, I _C = 75 A, T _J = 175°C		_	1.22	-	
DYNAMIC CHARACTERISTICS	•		•	•		•
Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	C _{ies}	_	15300	-	pF
Output Capacitance	7	C _{oes}	-	181	-	
Reverse Transfer Capacitance	7	C _{res}	-	68	-	
Gate Charge Total	V _{CE} = 400 V, I _C = 75 A, V _{GE} = 15 V	Qg	-	793	-	nC
Gate to Emitter Charge		Q _{ge}	-	72	-	1
Gate to Collector Charge	7	Q _{gc}	-	248	-	
SWITCHING CHARACTERISTICS, INDUCT	TIVE LOAD		•			
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	45	-	ns
Rise Time	$V_{CC} = 400 \text{ V}, I_{C} = 37.5 \text{ A}$ Rg = 4.7 Ω	t _r	-	20	-	
Turn-off Delay Time	V _{GE} = 15 V	t _{d(off)}	-	608	-	
Fall Time	7	t _f	-	160	-	
Turn-on Switching Loss	7	E _{on}	-	0.78	-	mJ
Turn-off Switching Loss	7	E _{off}	-	1.36	-	
Total Switching Loss	7	E _{ts}	-	2.14	-	
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	48	-	ns
Rise Time	$V_{CC} = 400 \text{ V}, I_{C} = 75 \text{ A}$ Rg = 4.7 Ω	t _r	-	40	-]
Turn-off Delay Time	V _{GE} = 15 V	t _{d(off)}	-	568	-]
Fall Time		t _f	-	128	-	1
Turn-on Switching Loss		E _{on}	-	1.88	-	mJ
Turn-off Switching Loss		E _{off}	-	2.38	-	1
Total Switching Loss	7	E _{ts}	-	4.26	-	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, INDUCTIVE LOAD						
Turn-on Delay Time	T _J = 175°C	t _{d(on)}	_	44	-	ns
Rise Time	$V_{CC} = 400 \text{ V, } I_{C} = 37.5 \text{ A}$ $Rg = 4.7 \Omega$	t _r	-	24	-	
Turn-off Delay Time	V _{GE} = 15 V	t _{d(off)}	-	680	-	
Fall Time		t _f	-	256	-	
Turn-on Switching Loss		E _{on}	_	1.54	-	mJ
Turn-off Switching Loss		E _{off}	_	2.11	-	
Total Switching Loss		E _{ts}	_	3.65	-	
Turn-on Delay Time	T _J = 175°C	t _{d(on)}	_	44	-	ns
Rise Time	$V_{CC} = 400 \text{ V, I}_{C} = 75 \text{ A}$ Rg = 4.7 Ω	t _r	-	44	-	
Turn-off Delay Time	V _{GE} = 15 V	t _{d(off)}	_	632	-	
Fall Time		t _f	-	184	-	
Turn-on Switching Loss		E _{on}	-	3.14	-	mJ
Turn-off Switching Loss		E _{off}	_	3.58	-	
Total Switching Loss		E _{ts}	_	6.72	-	
DIODE CHARACTERISTICS						
Diode Forward Voltage	I _F = 75 A, T _J = 25°C	V _F	-	1.65	2.1	V
	I _F = 75 A, T _J = 175°C		_	1.55	-	
Reverse Recovery Energy	T _J = 25°C,	Erec	-	105	-	μJ
Reverse Recovery Time	V _R = 400 V, I _F = 37.5 A, di _F /dt = 1000 A/μs	Trr	-	59	-	ns
Reverse Recovery Charge		Qrr	-	574	-	nC
Reverse Recovery Current		Irr	-	20	-	Α
Reverse Recovery Energy	T _J = 25°C,	Erec	_	152	-	μJ
Reverse Recovery Time	V _R = 400 V, I _F = 75 A, di _F /dt = 1000 A/μs	Trr	_	87	-	ns
Reverse Recovery Charge		Qrr	_	794	-	nC
Reverse Recovery Current		Irr	_	18	-	Α
Reverse Recovery Energy	T _J = 175°C,	Erec	-	550	-	μJ
Reverse Recovery Time	V _R = 400 V, I _F = 37.5 A, di _F /dt = 1000 A/μs	Trr	-	119	-	ns
Reverse Recovery Charge		Qrr	-	2154	-	nC
Reverse Recovery Current		Irr	-	36	-	Α
Reverse Recovery Energy	T _J = 175°C,	Erec	-	764	-	μJ
Reverse Recovery Time	V _R = 400 V, I _F = 75 A, di _F /dt = 1000 A/μs	Trr	-	145	-	ns
Reverse Recovery Charge	1	Qrr	-	2947	-	nC
Reverse Recovery Current		Irr	-	40	-	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

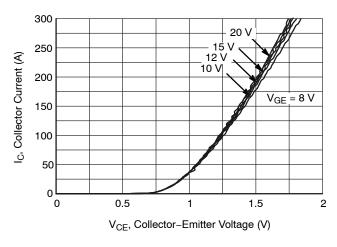


Figure 1. Typical Output Characteristics $(T_J = 25^{\circ}C)$

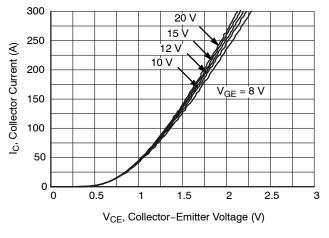


Figure 2. Typical Output Characteristics $(T_J = 175^{\circ}C)$

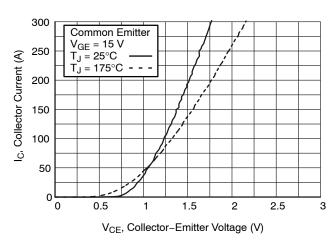


Figure 3. Typical Saturation Voltage Characteristics

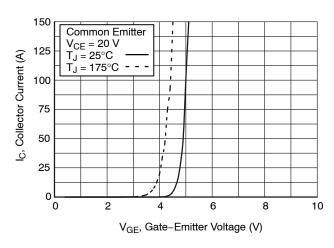


Figure 4. Typical Transfer Characteristics

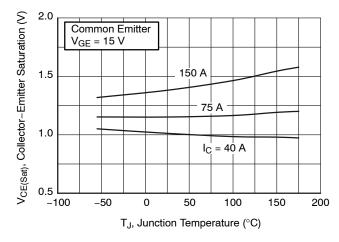


Figure 5. Saturation Voltage vs. Junction Temperature

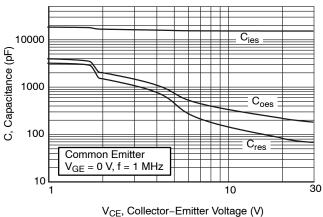
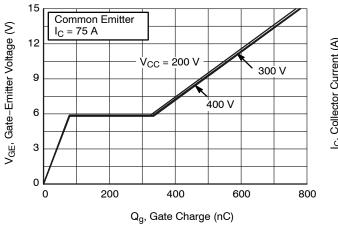



Figure 6. Capacitance Characteristics

TYPICAL CHARACTERISTICS (continued)

1000

1000

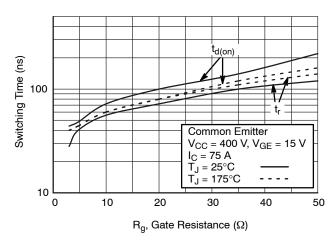
1000

1000

1000

1000

1000


1000

1000

V_{CE}, Collector–Emitter Voltage (V)

Figure 7. Gate Charge Characteristics

Figure 8. SOA Characteristics

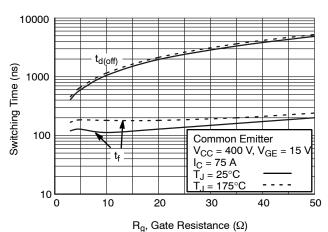
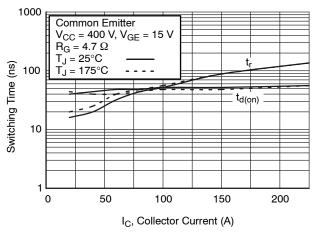



Figure 9. Turn-On Characteristics vs. Gate Resistance

Figure 10. Turn-Off Characteristics vs. Gate Resistance

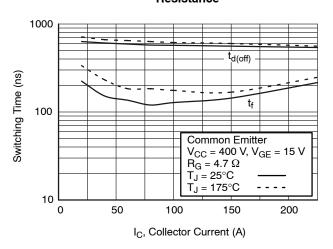


Figure 11. Turn-On Characteristics vs. Collector Current

Figure 12. Turn-Off Characteristics vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

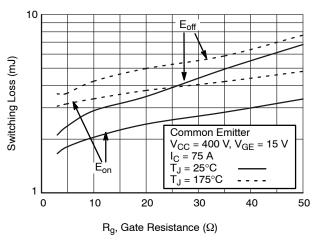


Figure 13. Switching Loss vs. Gate Resistance

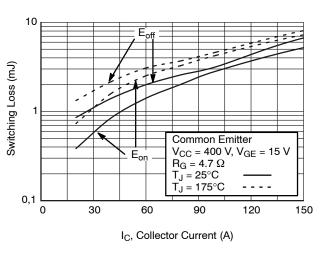


Figure 14. Switching Loss vs. Collector Current

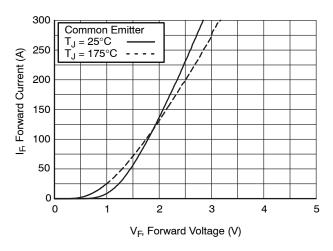


Figure 15. Forward Characteristics

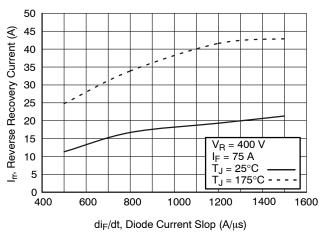


Figure 16. Reverse Recovery Current

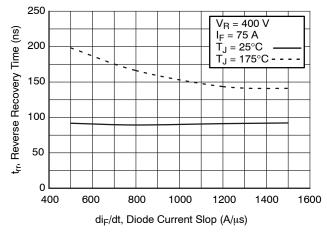


Figure 17. Reverse Recovery Time

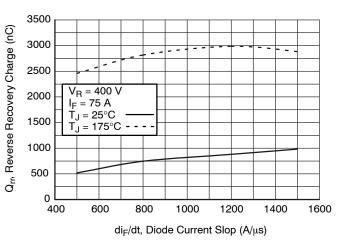


Figure 18. Stored Charge

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

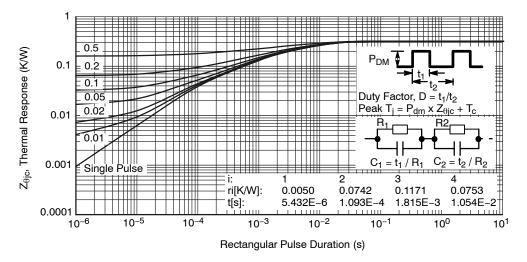


Figure 19. Transient Thermal Impedance of IGBT

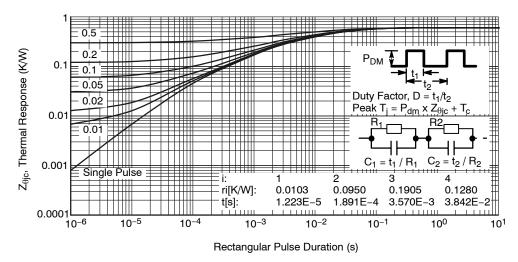
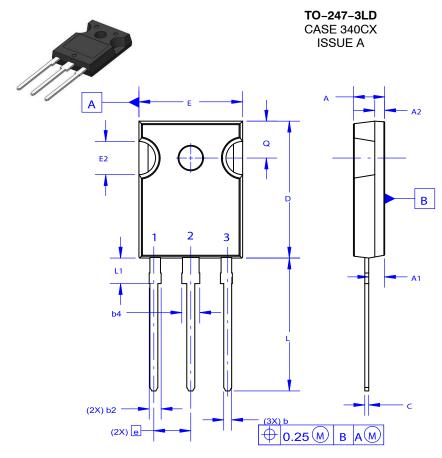
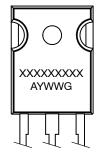



Figure 20. Transient Thermal Impedance of Diode

DATE 06 JUL 2020



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week

WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

φ _P —			Φ _{P1} D2
E1 —	2	-	D1

DIM	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	4.58	4.70	4.82	
A 1	2.20	2.40	2.60	
A2	1.40	1.50	1.60	
D	20.32	20.57	20.82	
Е	15.37	15.62	15.87	
E2	4.96	5.08	5.20	
е	~	5.56	~	
L	19.75	20.00	20.25	
L1	3.69	3.81	3.93	
ØΡ	3.51	3.58	3.65	
Q	5.34	5.46	5.58	
S	5.34	5.46	5.58	
b	1.17	1.26	1.35	
b2	1.53	1.65	1.77	
b4	2.42	2.54	2.66	
С	0.51	0.61	0.71	
D1	13.08	~	~	
D2	0.51	0.93	1.35	
E1	12.81	~	~	
ØP1	6.60	6.80	7.00	

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales