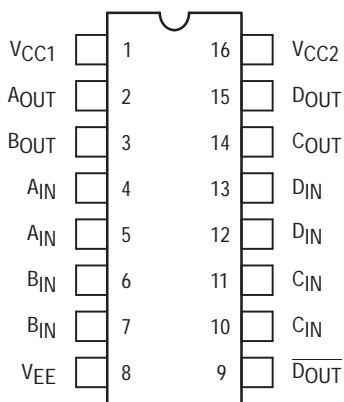

MC10104

Quad 2-Input AND Gate

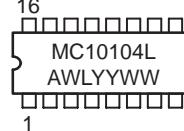

The MC10104 is a quad 2-input AND gate. One of the gates has both AND/NAND outputs available.

- $P_D = 35 \text{ mW typ/gate (No Load)}$
- $t_{pd} = 2.7 \text{ ns typ}$
- $t_r, t_f = 2.0 \text{ ns typ (20\%--80\%)}$

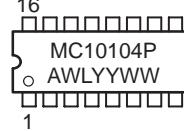
LOGIC DIAGRAM

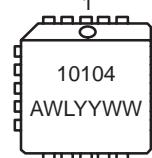
DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18
of the ON Semiconductor MECL Data Book (DL122/D).


ON Semiconductor

<http://onsemi.com>


MARKING DIAGRAMS


CDIP-16
L SUFFIX
CASE 620

PDIP-16
P SUFFIX
CASE 648

PLCC-20
FN SUFFIX
CASE 775

A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC10104L	CDIP-16	25 Units / Rail
MC10104P	PDIP-16	25 Units / Rail
MC10104FN	PLCC-20	46 Units / Rail

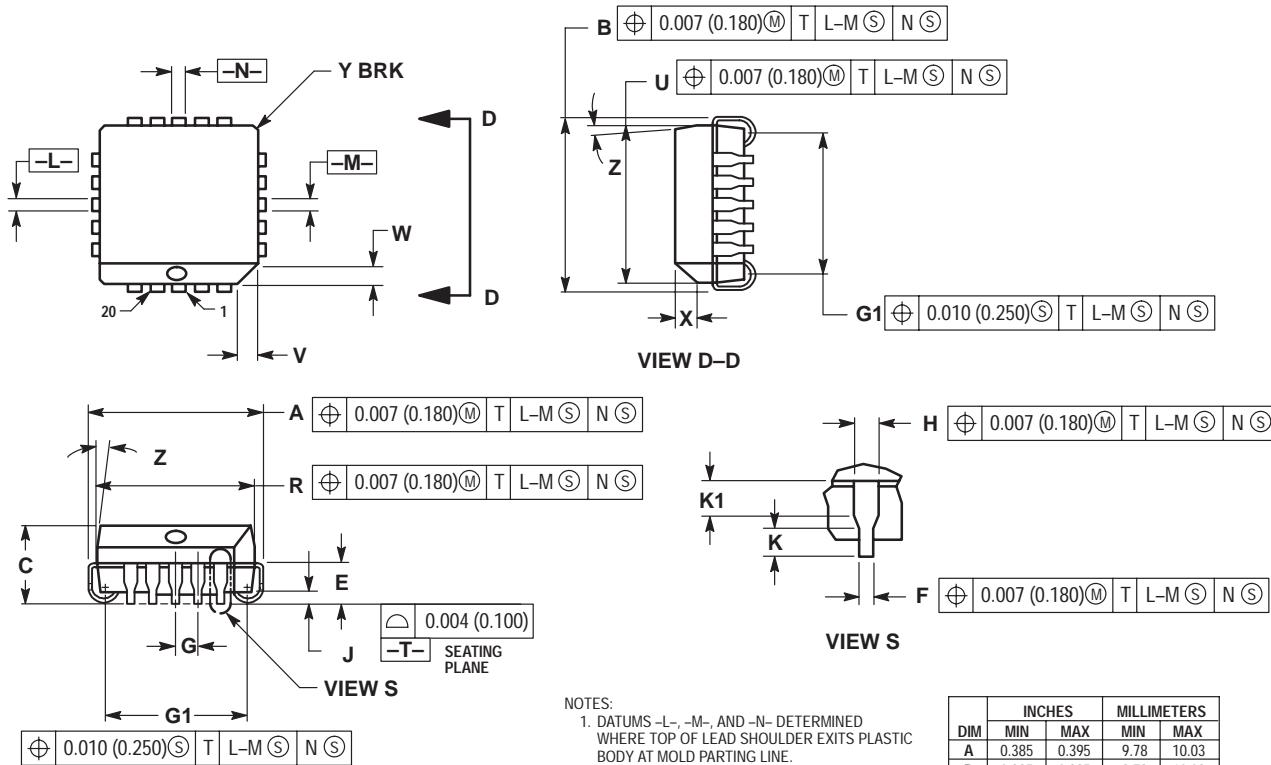
ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits								Unit	
			-30°C		+25°C			+85°C				
			Min	Max	Min	Typ	Max	Min	Max			
Power Supply Drain Current	I_E	8		39			35		39		mA	
Input Current	I_{inH}^*	12		425			265		265		μ A	
		13		350			220		220			
	I_{inL}	12	0.5		0.5			0.3			μ A	
Output Voltage Logic 1	V_{OH}	15	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700		Vdc	
		9	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700			
Output Voltage Logic 0	V_{OL}	15	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615		Vdc	
		9	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615			
Threshold Voltage Logic 1	V_{OHA}	9	-1.090		-0.980			-0.910			Vdc	
		9	-1.090		-0.980			-0.910				
		15	-1.090		-0.980			-0.910				
		15	-1.090		-0.980			-0.910				
Threshold Voltage Logic 0	V_{OLA}	9		-1.655			-1.630		-1.595		Vdc	
		9		-1.655			-1.630		-1.595			
		15		-1.655			-1.630		-1.595			
		15		-1.655			-1.630		-1.595			
Switching Times (50 Ω Load)											ns	
Propagation Delay	t_{12+15+}	15	1.0	4.3	1.0	2.2	4.0	1.0	4.2			
	t_{12-15-}	15	1.0	4.3	1.0	2.2	4.0	1.0	4.2			
	t_{12+9-}	9	1.0	4.3	1.0	2.2	4.0	1.0	4.2			
	t_{12-9+}	9	1.0	4.3	1.0	2.2	4.0	1.0	4.2			
	t_{13+15+}	15	1.0	4.3	1.0	2.7	4.0	1.0	4.2			
	t_{13+9-}	9	1.0	4.3	1.0	2.7	4.0	1.0	4.2			
Rise Time (20 to 80%)	t_{15+}	15	1.5	3.7	1.5	2.0	3.5	1.5	3.6			
	t_{9+}	9	1.5	3.7	1.5	2.0	3.5	1.5	3.6			
Fall Time (20 to 80%)	t_{15-}	15	1.5	3.7	1.5	2.0	3.5	1.5	3.6			
	t_{9-}	9	1.5	3.7	1.5	2.0	3.5	1.5	3.6			

* Inputs 4, 7, 10 and 13 will behave similarly for ac and I_{inH} values.
 Inputs 5, 6, 11 and 12 will behave similarly for ac and I_{inH} values.

ELECTRICAL CHARACTERISTICS (continued)

@ Test Temperature			TEST VOLTAGE VALUES (Volts)					(V _{CC}) Gnd	
			V _{IHmax}	V _{ILmin}	V _{IHMin}	V _{ILMax}	V _{EE}		
-30°C			-0.890	-1.890	-1.205	-1.500	-5.2		
+25°C			-0.810	-1.850	-1.105	-1.475	-5.2		
+85°C			-0.700	-1.825	-1.035	-1.440	-5.2		
Characteristic	Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW						
			V _{IHmax}	V _{ILmin}	V _{IHMin}	V _{ILMax}	V _{EE}		
Power Supply Drain Current	I _E	8					8	1, 16	
Input Current	I _{inH*}	12	12, 13				8	1, 16	
		13	13				8	1, 16	
	I _{inL}	12		12			8	1, 16	
Output Voltage	Logic 1	V _{OH}	15 9	12, 13			8 8	1, 16 1, 16	
Output Voltage	Logic 0	V _{OL}	15 9	12, 13			8 8	1, 16 1, 16	
Threshold Voltage	V _{VOHA}	9					12	8	
		9					13	8	
Threshold Voltage	V _{VOLA}	15	12			13	8	1, 16	
		15	13			12	8	1, 16	
Switching Times (50Ω Load)			+1.11V			Pulse In	Pulse Out	-3.2 V	
			t ₁₂₊₁₅₊	15		12	15	8	
Propagation Delay			t ₁₂₋₁₅₋	15		12	15	8	
			t ₁₂₊₉₋	9		12	9	8	
Rise Time	(20 to 80%)	t ₁₅₊ t ₉₊	t ₁₂₊₉₋	9		12	9	8	
			t ₁₃₊₁₅₊	15		13	15	8	
Fall Time	(20 to 80%)	t ₁₅₋ t ₉₋	t ₁₃₊₉₋	9		13	9	8	
			t ₁₅₋	15		13	15	8	
			t ₉₋	9		13	9	8	

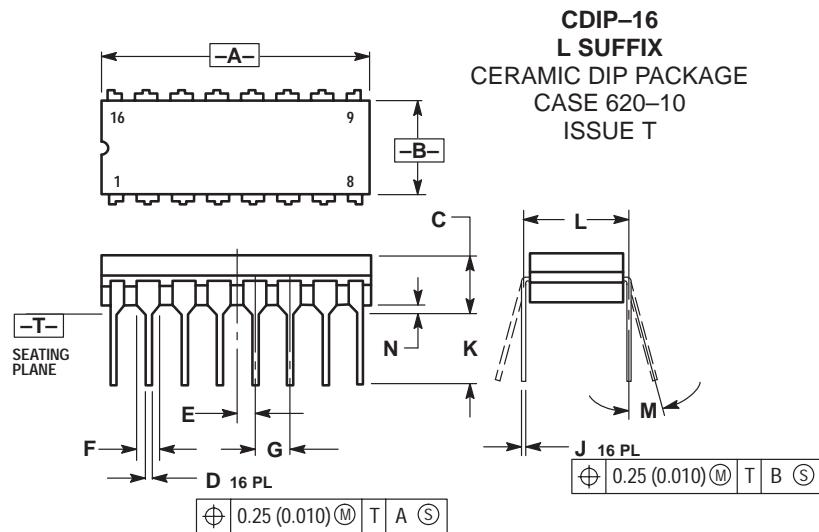

* Inputs 4, 7, 10 and 13 will behave similarly for ac and I_{inH} values.

Inputs 5, 6, 11 and 12 will behave similarly for ac and I_{inH} values.

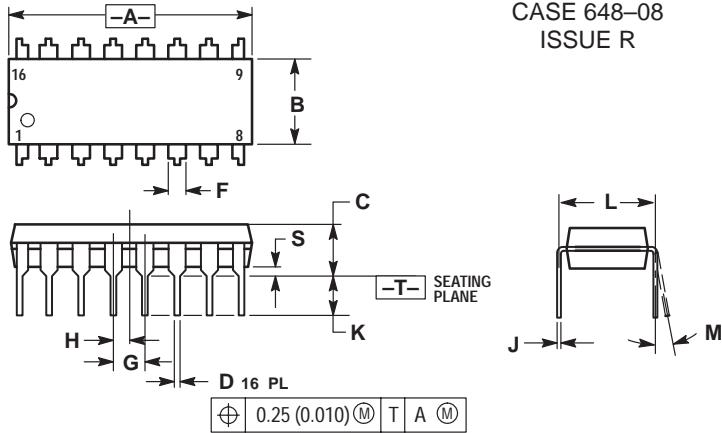
Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

PACKAGE DIMENSIONS

PLCC-20
FN SUFFIX
PLASTIC PLCC PACKAGE
CASE 775-02
ISSUE C



NOTES:


1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: INCH.
6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.385	0.395	9.78	10.03
B	0.385	0.395	9.78	10.03
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050 BSC		1.27 BSC	
H	0.026	0.032	0.66	0.81
J	0.020	—	0.51	—
K	0.025	—	0.64	—
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y	—	0.020	—	0.50
Z	2°	10°	2°	10°
G1	0.310	0.330	7.88	8.38
K1	0.040	—	1.02	—

PACKAGE DIMENSIONS

**PDIP-16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648-08
ISSUE R**

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
4. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.750	0.785	19.05	19.93
B	0.240	0.295	6.10	7.49
C	—	0.200	—	5.08
D	0.015	0.020	0.39	0.50
E	0.050	BSC	1.27	BSC
F	0.055	0.065	1.40	1.65
G	0.100	BSC	2.54	BSC
H	0.008	0.015	0.21	0.38
K	0.125	0.170	3.18	4.31
L	0.300	BSC	7.62	BSC
M	0°	15°	0°	15°
N	0.020	0.040	0.51	1.01

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
H	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time)
Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time)
Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time)
Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong 800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745
Email: r14525@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: <http://onsemi.com>

For additional information, please contact your local
Sales Representative.