

J-FET INPUT OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM062/064 are J-FET input operational amplifiers which were designed as low-power versions of the NJM082. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and bias current.

The NJM062 features the same terminal assignments as the NJM4558/2043/2904/3404/072 and NJM064 features the same terminal assignments as the NJM2902/3403/2058/ 2059/2060.

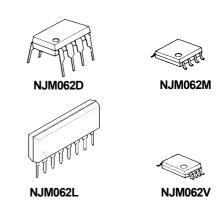
Each of these JFET-input operational amplifiers incorporates well-matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.

■ FEATURES

 Operating Voltage (±2V~±18V)

• J-FET Input

 $(10^{12}\Omega \, typ.)$ High Input Resistance

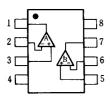

 Low Operating Current (200µA/circuit typ.)

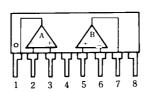
 High Slew Rate (3.5V/µs typ.) Wide Unity Gain Bandwidth (1MHztyp.)

 Package Outline DIP8/14,DMP8/14,SSOP8/14,SIP8

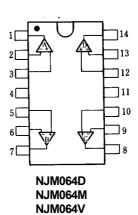
Bipolar Technology

■ PACKAGE OUTLINE

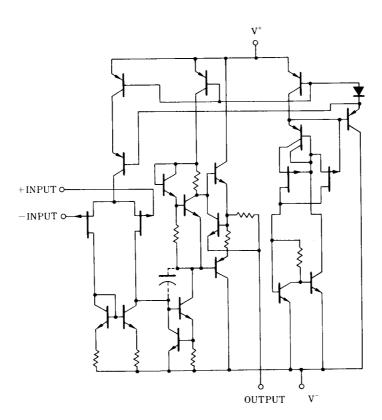




■ PIN CONFIGURATION



NJM062D NJM062M NJM062V


NJM062L

PIN FUNCTION 1.A OUTPUT 2.A -INPUT 3.A +INPUT 4.V 5.B +INPUT **6.B -INPUT 7.B OUTPUT** 8.V⁺

PIN FUNCTION 1. A OUTPUT 2. A -INPUT 3. A +INPUT 4. V 5. B +INPUT 6. B -INPUT 7. B OUTPUT **8.C OUTPUT** 9. C -INPUT 10.C +INPUT 11.V **12.D +INPUT** 13.D -INPUT 14.D OUTPUT

■ EQUIVALENT CIRCUIT (062 is 1/2 Shown.064 is 1/4 Shown.)

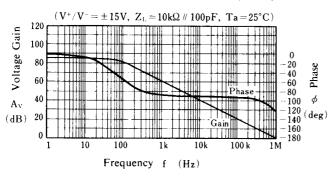
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

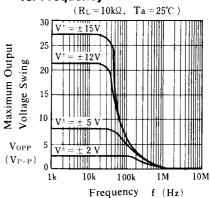
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	± 18	V
Differential Input Voltage	V _{ID}	± 30	V
Input Voltage	V _{IC}	± 15	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300 (SIP8) 800 (SSOP8) 250 (DIP14) 700 (DMP14) 700 (note2) (SSOP14) 300	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	$^{\circ}$

 $(\ note1\) \ For\ supply\ voltage\ less\ than\ \pm 15V. \quad The\ absolute\ maximum\ input\ voltage\ is\ equal\ to\ the\ supply\ voltage.$ (note2) At on PC board

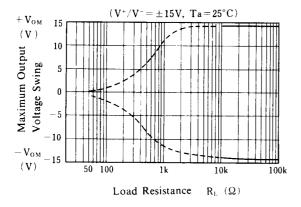
■ ELECTRICAL CHARACTERISTICS

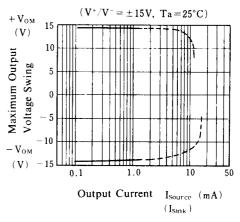

(V⁺/√=±15V,Ta=25°C)

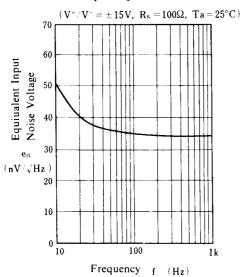
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Supply Voltage	V ⁺ N ⁻		±2	-	± 18	V
Input Offset Voltage	V _{IO}	R _S =50Ω	-	3	15	mV
Input Offset Current	I _{IO}		-	1	200	pА
Input Bias Current	I_{B}		-	2	400	pА
Input Common Mode Voltage Range	V _{ICM}		± 13	+15 -13.5	-	V
Maximum Peak-to-peak Output Voltage Swing	V _{OM}	R _L =10kΩ	± 13	+14.2 -14.0	-	V
Large-signal Voltage Gain	A_{V}	R _L ≥10kΩ,V _O =±10V	70	80	-	dB
Unity Gain Bandwidth	f⊤	$R_L=10k\Omega$	-	1	-	MH_Z
Input Resistance	R _{IN}		-	10 ¹²	-	Ω
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	70	100	-	dB
Operating Current	I _{CC}	R _L = ∞ each amplifier	-	200	250	μA
Slew Rate	SR	R _L =10kΩ	-	3.5	-	V/μs
Equivalent Input Noise Voltage	e _n	$R_S=100\Omega$, $f=1kHz$	-	35	_	nV/√Hz

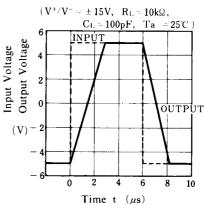

New Japan Radio Co., Ltd.

■ TYPICAL CHARACTERISTICS

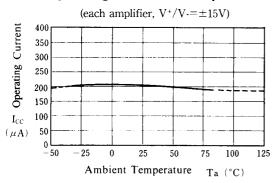

Voltage Gain, Phase Shift vs. Frequency


Maximum Output Voltage Swing vs. Frequency

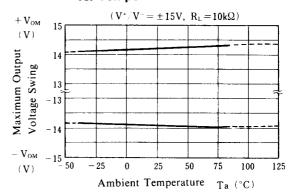

Maximum Output Voltage Swing vs. Load Resistance


Maximum Output Voltage Swing vs. Output Current

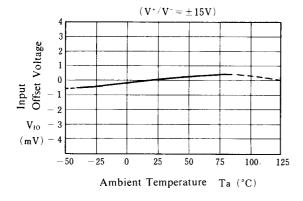
Equivalent Input Noise Voltage vs. Frequency

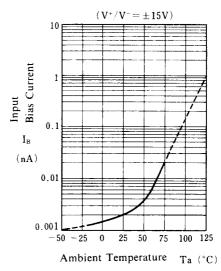


Voltage Follower Large Signal Pulse Response

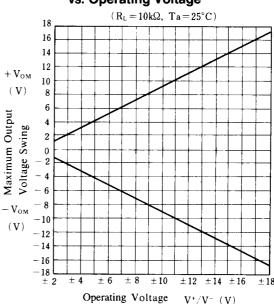


■ TYPICAL CHARACTERISTICS


Operating Current vs. Temperature


Maximum Output Voltage Swing vs. Temperature


Input Offset Voltage vs. Temperature


Input Bias Current vs. Tenperature

Operating Current vs. Operating Voltage

Maximum Output Voltage Swing vs. Operating Voltage

MEMO

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.