

MOSFET – Power, Single, N-Channel, μ8FL

30 V, 71 A, 4.2 m Ω

NVTFS4C06N

Features

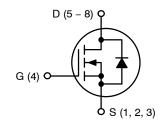
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- NVTFS4C06NWF Wettable Flanks Product
- NVT Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Symbol	Parameter				Unit
V_{DSS}	Drain-to-Source Voltage			30	V
V_{GS}	Gate-to-Source Voltage			±20	V
I _D			T _A = 25°C	21	Α
	$R_{\theta JA}$ (Notes 1, 2, 4)	State	T _A = 100°C	15	
P_{D}	Power Dissipation R _{θJA}		T _A = 25°C	3.1	W
	(Note 1, 2, 4)		T _A = 100°C	1.6	
I _D	Continuous Drain Current R _{0,JC} (Note 1, 3, 4)		T _A = 25°C	71	
			T _A = 100°C	50	Α
P_{D}	Power Dissipation		T _A = 25°C	37	W
	$R_{\theta JC}$ (Note 1, 3, 4)		T _A = 100°C	18	
I_{DM}	Pulsed Drain Current	$T_A = 25^{\circ}C$	C, t _p = 10 μs	367	Α
T _J , T _{stg}	Operating Junction and Storage Temperature				ç
IS	Source Current (Body Diode)				Α
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy ($T_J = 25$ °C, $I_L = 26 A_{pk}$, $L = 0.1 \text{ mH}$)				mJ
TL	Lead Temperature for Solda (1/8" from Case for 10 s)	ering Purpo	ses	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	4.2 m Ω @ 10 V	71 A
	6.1 mΩ @ 4.5 V	



WDFN8 3.3x3.3, 0.65P CASE 511AB

WDFNW8 3.3x3.3, 0.65P (Full-Cut μ 8FL WF) CASE 515AN

N-Channel

MARKING DIAGRAM

4C06 = Specific Device Code for

NVMTS4C06N

06WF = Specific Device Code of

NVTFS4C06NWF A = Assembly Location

Y = Year WW = Work Week • Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 6 of this data sheet.

NOTE: Some of the devices on this data sheet have been ${\bf DISCONTINUED}.$ Please refer to the table on page 6.

THERMAL RESISTANCE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Drain) (Notes 1 and 4)	4.1	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Notes 1 and 2)	48	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- Surface-mounted on FR4 board using a 650 mm² 2 oz. Cu pad.
 Assumes heat-sink sufficiently large to maintain constant case temperature independent of device power.
- 4. Continuous DC current rating. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Symbol	Parameter	Test Co	ndition	Min	Тур	Max	Unit	
OFF CHARA	ACTERISTICS	•		•	•	•	•	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		30	_	_	V	
V _{(BR)DSS} /	Drain-to-Source Breakdown Voltage Temperature Coefficient			-	14.4	-	mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C	_	-	1.0	μΑ	
			T _J = 125°C	-	_	10		
I _{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 V, V_{GS} =$	±20 V	_	_	±100	nA	
	CTERISTICS (Note 5)	Γ		ı	1	1		
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	1.3	-	2.2	V	
V _{GS(TH)} /T _J	Negative Threshold Temperature Coefficient			-	3.8	-	mV/°C	
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V	I _D = 30 A	-	3.4	4.2	2 m Ω	
		V _{GS} = 4.5 V	I _D = 30 A	-	4.9	6.1	5.1	
g _F s	Forward Transconductance	V _{DS} = 1.5 V, I _D = 15 A		_	58	_	S	
R_{G}	Gate Resistance	T _A = 25°C		-	1.0	_	Ω	
CHARGES A	AND CAPACITANCES							
C _{ISS}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V		-	1683	_	pF	
C _{OSS}	Output Capacitance			_	841	_	1	
C _{RSS}	Reverse Transfer Capacitance			_	40	-		
C _{RSS} /C _{ISS}	Capacitance Ratio	V _{GS} = 0 V, V _{DS} =	15 V, f = 1 MHz	_	0.023	_		
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 4.5 V, V _{DS}	= 15 V; I _D = 30 A	_	11.6	_	nC	
Q _{G(TH)}	Threshold Gate Charge			_	2.6	_		
Q _{GS}	Gate-to-Source Charge			_	4.7	_	1	
Q _{GD}	Gate-to-Drain Charge			_	4.0	_	1	
V _{GP}	Gate Plateau Voltage			_	3.1	_	V	
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 10 V, V _{DS} :	= 15 V; I _D = 30 A	_	26	_	nC	
, ,	CHARACTERISTICS (Note 6)							
t _{d(ON)}	Turn-On Delay Time	V_{GS} = 4.5 V, V_{DS}	= 15 V,	_	10	_	ns	
t _r	Rise Time	$I_D = 15 \text{ A}, R_G = 3.0 \Omega$		_	32	_		
t _{d(OFF)}	Turn-Off Delay Time			_	18	_		
t _f	Fall Time			_	5.0	_		
t _{d(ON)}	Turn-On Delay Time	V _{GS} = 10 V, V _{DS} :	= 15 V,	_	8.0	_	ns	
t _r	Rise Time	$I_D = 15 \text{ A}, R_G = 3$		_	28	_	1	
t _{d(OFF)}	Turn-Off Delay Time				24		1	
t _f	Fall Time				3.0	_	1	
۲	1 GIL TIMO	<u></u>			0.0			

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

			•		·		
Symbol	Parameter	Test Condi	tion	Min	Тур	Max	Unit
DRAIN-SOL	DRAIN-SOURCE DIODE CHARACTERISTICS						
V_{SD}	Forward Diode Voltage	V _{GS} = 0 V, I _S = 10 A	T _J = 25°C	-	0.8	1.1	V
		IS = 10 A	T _J = 125°C	-	0.63	_	
t _{RR}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, dIS/dt} = 10$	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_S = 30 \text{ A}$		34	_	ns
ta	Charge Time	I _S = 30 A			17	_	
t _b	Discharge Time			-	17	_	
Q_{RR}	Reverse Recovery Charge			_	22	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

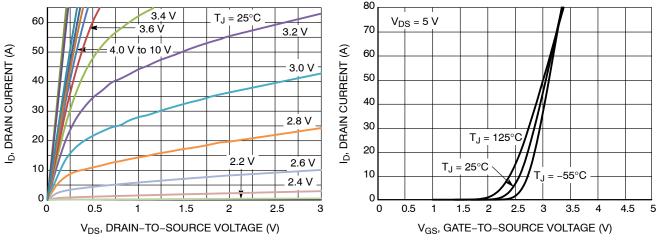


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

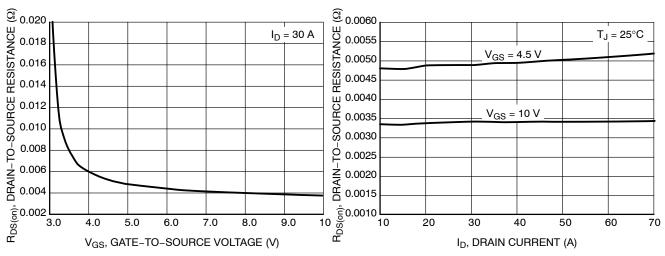


Figure 3. On-Resistance vs. V_{GS}

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

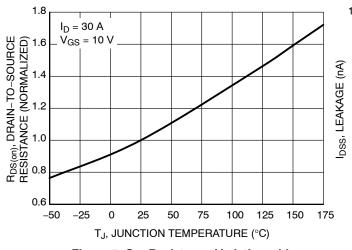


Figure 5. On–Resistance Variation with Temperature

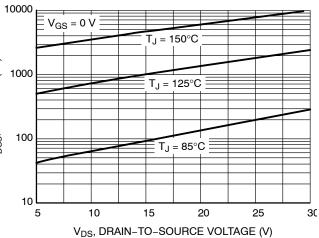


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS (continued)

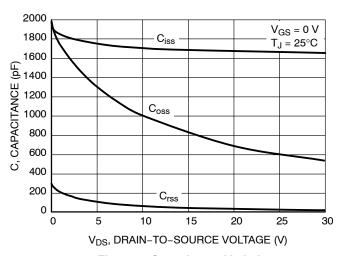


Figure 7. Capacitance Variation

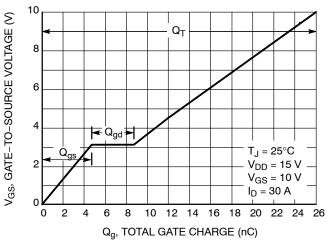


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

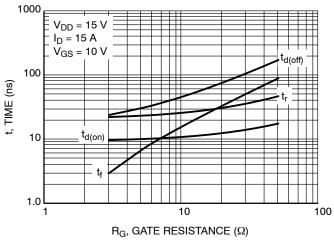


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

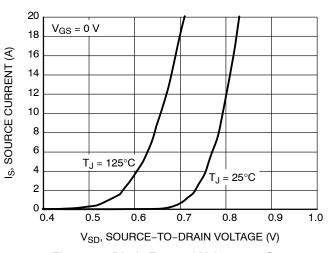


Figure 10. Diode Forward Voltage vs. Current

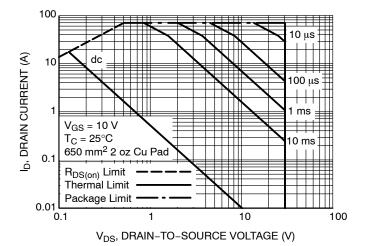


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS (continued)

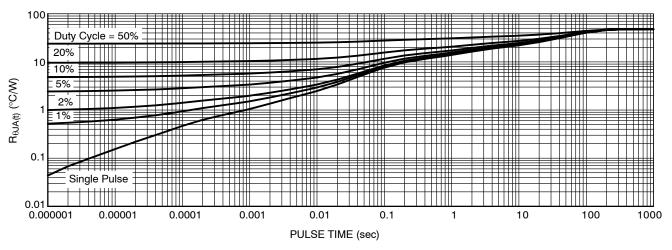


Figure 12. Thermal Response

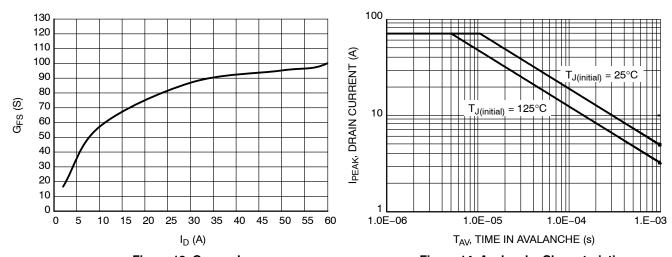


Figure 13. G_{FS} vs. I_D

Figure 14. Avalanche Characteristics

ORDERING INFORMATION

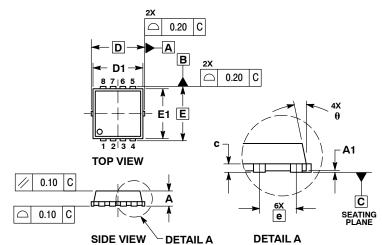
Device	Package	Shipping [†]
NVTFS4C06NTAG	WDFN8 3.3x3.3, 0.65P (Pb-Free)	1500 / Tape & Reel
NVTFS4C06NTWG	WDFN8 3.3x3.3, 0.65P (Pb-Free)	5000 / Tape & Reel

DISCONTINUED (Note 7)

NVTFS4C06NWFTAG	WDFNW8 3.3x3.3, 0.65P (Full-Cut μ8FL WF) (Pb-Free)	1500 / Tape & Reel
NVTFS4C06NWFTWG	WDFNW8 3.3x3.3, 0.65P (Full-Cut μ8FL WF) (Pb-Free)	5000 / Tape & Reel

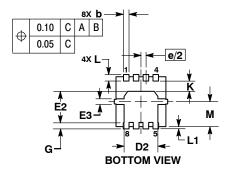
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{7.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.



SCALE 2:1

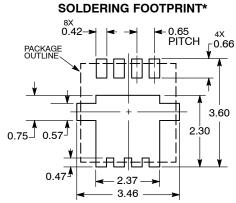
WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D


DATE 23 APR 2012

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH
 PROTRUSIONS OR GATE BURRS.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00		0.05	0.000		0.002
b	0.23	0.30	0.40	0.009	0.012	0.016
С	0.15	0.20	0.25	0.006	0.008	0.010
D		3.30 BSC		0	.130 BSC)
D1	2.95	3.05	3.15	0.116	0.120	0.124
D2	1.98	2.11	2.24	0.078	0.083	0.088
E		3.30 BSC		O	.130 BSC)
E1	2.95	3.05	3.15	0.116	0.120	0.124
E2	1.47	1.60	1.73	0.058	0.063	0.068
E3	0.23	0.30	0.40	0.009	0.012	0.016
е	0.65 BSC			(0.026 BS0	2
G	0.30	0.41	0.51	0.012	0.016	0.020
K	0.65	0.80	0.95	0.026	0.032	0.037
L	0.30	0.43	0.56	0.012	0.017	0.022
L1	0.06	0.13	0.20	0.002	0.005	0.008
М	1.40	1.50	1.60	0.055	0.059	0.063
θ	0 °		12 °	0 °		12 °



GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location

= Year WW = Work Week = Pb-Free Package

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

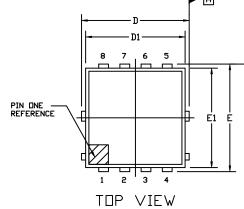
^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

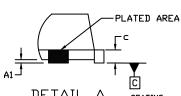
1. DIMENSIONING AND TOLERANCING PERASME Y14.5M. 2009.

DIMENSION DI AND EI DO NOT INCLUDE MOLD FLASH,

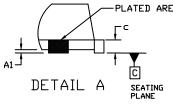
2. CONTROLLING DIMENSION: MILLIMETERS

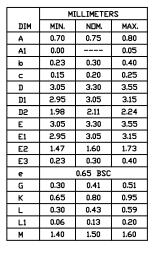
PROTRUSIONS, OR GATE BURRS.

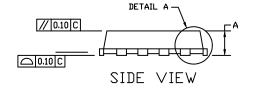


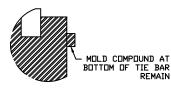

WDFNW8 3.3x3.3, 0.65P (Full-Cut μ8FL WF) CASE 515AN

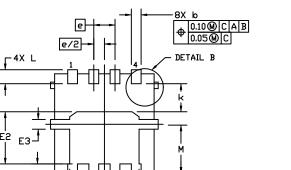
ISSUE O

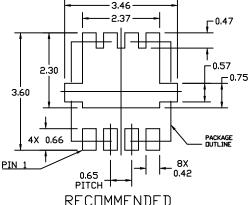

DATE 25 AUG 2020








NOTES:



DETAIL B

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

BOTTOM VIEW

XXXX AYWW= XXXX = Specific Device Code

= Assembly Location = Year

WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

(Note: Microdot may be in either location)

DOCUMENT NUMBER:	98AON24556H	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WDFNW8 3.3x3.3, 0.65P (Full-Cut μ8FL WF)		PAGE 1 OF 1		

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales