

**POWER MOSFET
THRU-HOLE (TO-254AA)**

**IRFM360
400V, N-CHANNEL
HEXFET® MOSFET TECHNOLOGY**

Product Summary

Part Number	R _{Ds(on)}	I _D
IRFM360	0.20 Ω	23A

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

TO-254AA

Features:

- Simple Drive Requirements
- Ease of Parallelizing
- Hermetically Sealed
- Electrically Isolated
- Dynamic dv/dt Rating
- Light-weight

Absolute Maximum Ratings

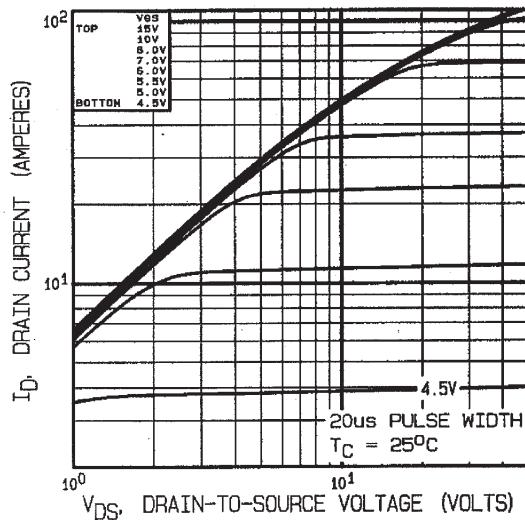
	Parameter		Units
I _D @ V _{GS} = 10V, T _C = 25°C	Continuous Drain Current	23	A
I _D @ V _{GS} = 10V, T _C = 100°C	Continuous Drain Current	14	
I _{DM}	Pulsed Drain Current ①	92	W
P _D @ T _C = 25°C	Max. Power Dissipation	250	
	Linear Derating Factor	2.0	W/°C
V _{GS}	Gate-to-Source Voltage	±20	V
E _{AS}	Single Pulse Avalanche Energy ②	980	mJ
I _{AR}	Avalanche Current ①	23	A
E _{AR}	Repetitive Avalanche Energy ①	25	mJ
dv/dt	Peak Diode Recovery dv/dt ③	4.0	V/ns
T _J	Operating Junction	-55 to 150	°C
T _{STG}	Storage Temperature Range		
	Lead Temperature	300 (0.063 in.(1.6mm) from case for 10s)	g
	Weight	9.3 (Typical)	

For footnotes refer to the last page

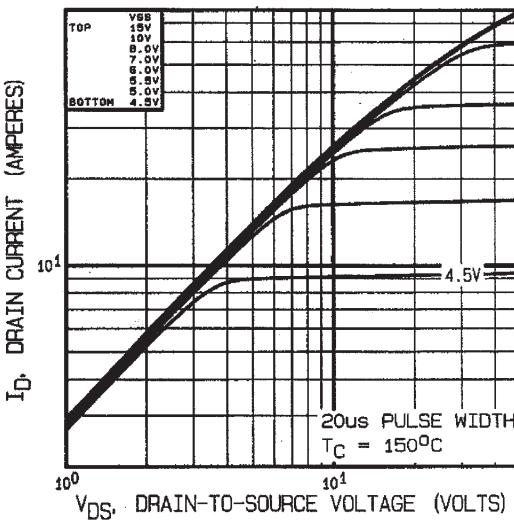
Electrical Characteristics @ $T_j = 25^\circ\text{C}$ (Unless Otherwise Specified)

	Parameter	Min	Typ	Max	Units	Test Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	400	—	—	V	$\text{V}_{\text{GS}} = 0\text{V}, \text{I}_D = 1.0\text{mA}$
$\Delta \text{BV}_{\text{DSS}}/\Delta T_j$	Temperature Coefficient of Breakdown Voltage	—	0.46	—	$\text{V}/^\circ\text{C}$	Reference to 25°C , $\text{I}_D = 1.0\text{mA}$
$\text{R}_{\text{DS(on)}}$	Static Drain-to-Source On-State Resistance	—	—	0.20	Ω	$\text{V}_{\text{GS}} = 10\text{V}, \text{I}_D = 14\text{A}$ ④
		—	—	0.23		$\text{V}_{\text{GS}} = 10\text{V}, \text{I}_D = 23\text{A}$
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	2.0	—	4.0	V	$\text{V}_{\text{DS}} = \text{V}_{\text{GS}}, \text{I}_D = 250\mu\text{A}$
g_{fs}	Forward Transconductance	1.4	—	—		$\text{V}_{\text{DS}} = 15\text{V}, \text{I}_{\text{DS}} = 14\text{A}$ ④
I_{DSS}	Zero Gate Voltage Drain Current	—	—	25	μA	$\text{V}_{\text{DS}} = 320\text{V}, \text{V}_{\text{GS}} = 0\text{V}$
		—	—	250		$\text{V}_{\text{DS}} = 320\text{V}, \text{V}_{\text{GS}} = 0\text{V}, \text{T}_j = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Leakage Forward	—	—	100	nA	$\text{V}_{\text{GS}} = 20\text{V}$
I_{GSS}	Gate-to-Source Leakage Reverse	—	—	-100		$\text{V}_{\text{GS}} = -20\text{V}$
Q_g	Total Gate Charge	—	—	210	nC	$\text{V}_{\text{GS}} = 10\text{V}, \text{I}_D = 23\text{A}$
Q_{gs}	Gate-to-Source Charge	—	—	28		$\text{V}_{\text{DS}} = 200\text{V}$
Q_{gd}	Gate-to-Drain ('Miller') Charge	—	—	120		
$t_{\text{d(on)}}$	Turn-On Delay Time	—	—	33	ns	$\text{V}_{\text{DD}} = 200\text{V}, \text{I}_D = 23\text{A}, \text{V}_{\text{GS}} = 10\text{V}, \text{R}_G = 2.35\Omega$
t_r	Rise Time	—	—	140		
$t_{\text{d(off)}}$	Turn-Off Delay Time	—	—	120		
t_f	Fall Time	—	—	99		
$\text{L}_S + \text{L}_D$	Total Inductance	—	6.8	—	nH	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
C_{iss}	Input Capacitance	—	4200	—	pF	$\text{V}_{\text{GS}} = 0\text{V}, \text{V}_{\text{DS}} = 25\text{V}$ $f = 1.0\text{MHz}$
C_{oss}	Output Capacitance	—	900	—		
C_{rss}	Reverse Transfer Capacitance	—	400	—		

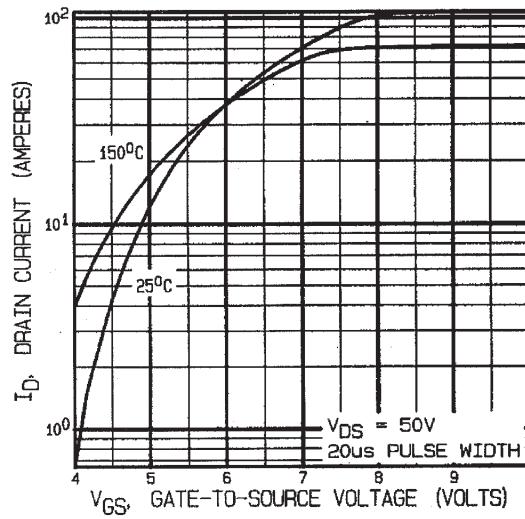
Source-Drain Diode Ratings and Characteristics


	Parameter	Min	Typ	Max	Units	Test Conditions
I_S	Continuous Source Current (Body Diode)	—	—	23	A	
I_{SM}	Pulse Source Current (Body Diode) ①	—	—	92		
V_{SD}	Diode Forward Voltage	—	—	1.8	V	$\text{T}_j = 25^\circ\text{C}, \text{I}_S = 23\text{A}, \text{V}_{\text{GS}} = 0\text{V}$ ④
t_{rr}	Reverse Recovery Time	—	—	1000	nS	$\text{T}_j = 25^\circ\text{C}, \text{I}_F = 23\text{A}, \text{di/dt} \leq 100\text{A}/\mu\text{s}$ $\text{V}_{\text{DD}} \leq 50\text{V}$ ④
Q_{RR}	Reverse Recovery Charge	—	—	16	μC	
t_{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $\text{L}_S + \text{L}_D$.				

Thermal Resistance


	Parameter	Min	Typ	Max	Units	Test Conditions
R_{thJC}	Junction-to-Case	—	—	0.5	$^\circ\text{C}/\text{W}$	Typical socket mount
R_{thCS}	Csae-to-sink	—	0.21	—		
R_{thJA}	Junction-to-Ambient	—	—	48		

Note: Corresponding Spice and Saber models are available on International Rectifier Website.


For footnotes refer to the last page

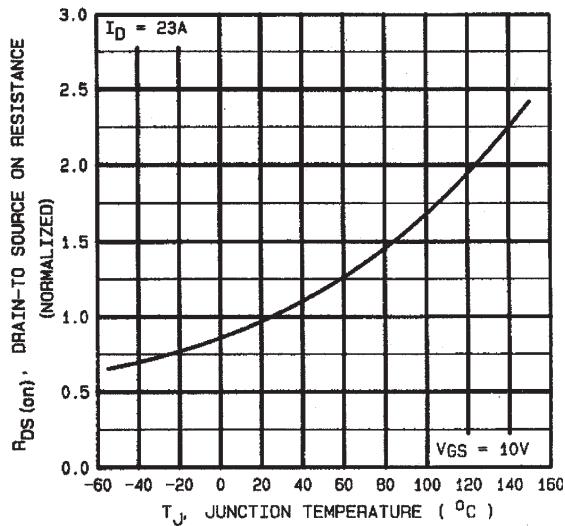

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance
 Vs. Temperature

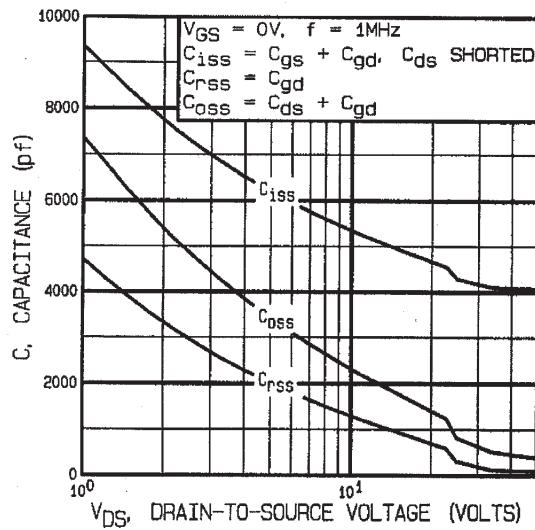


Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage

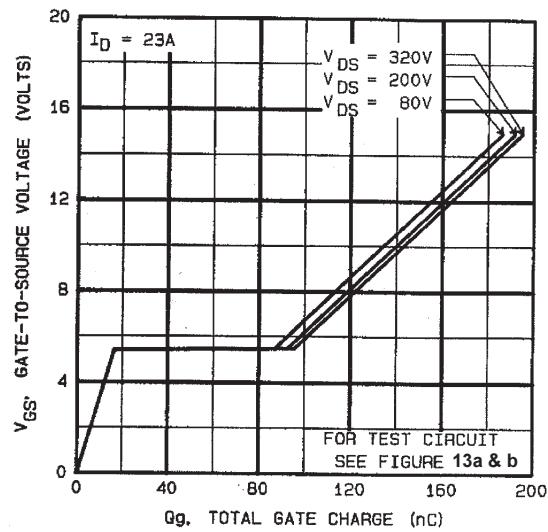


Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage

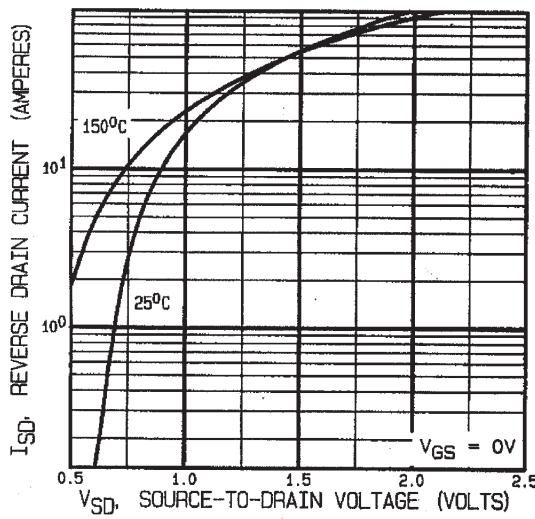
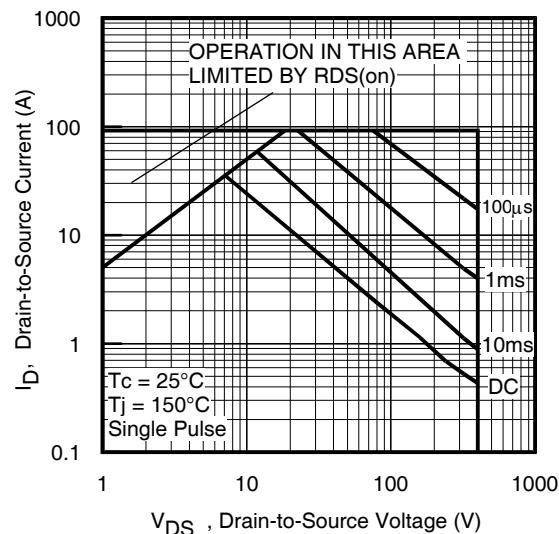
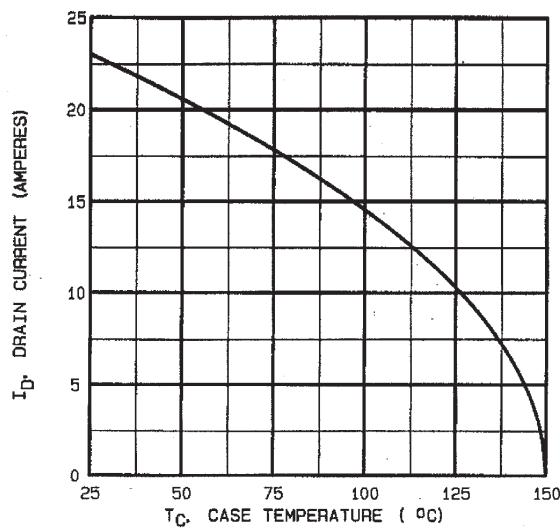
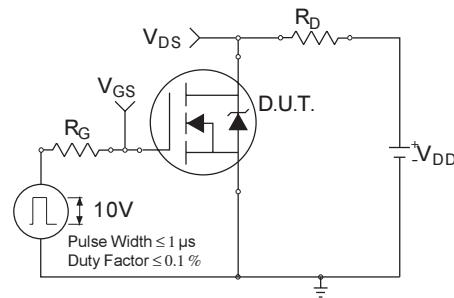
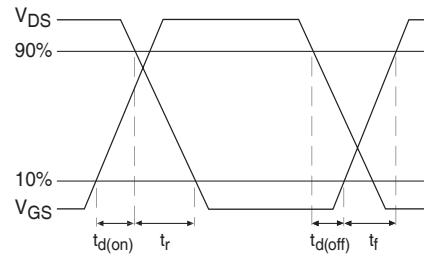


Fig 7. Typical Source-Drain Diode
Forward Voltage


Fig 8. Maximum Safe Operating Area

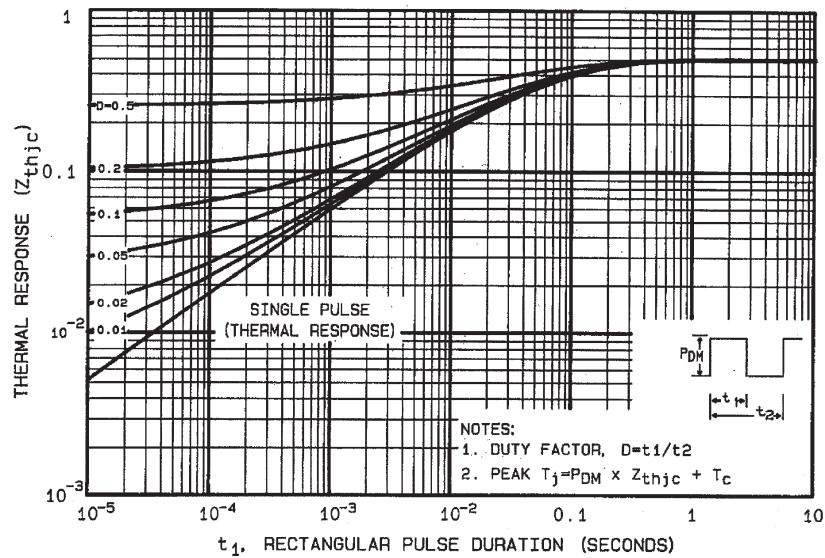

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

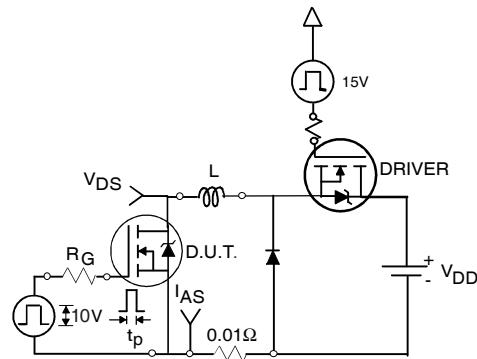


Fig 12a. Unclamped Inductive Test Circuit

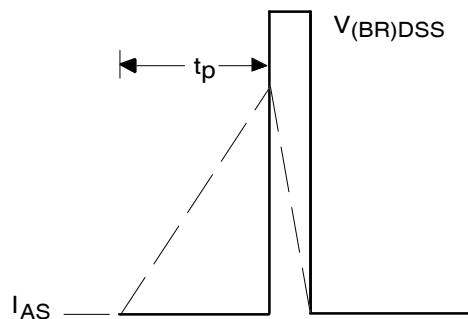


Fig 12b. Unclamped Inductive Waveforms

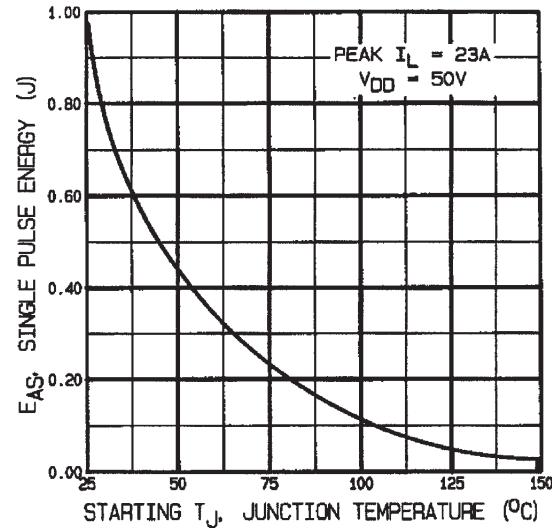
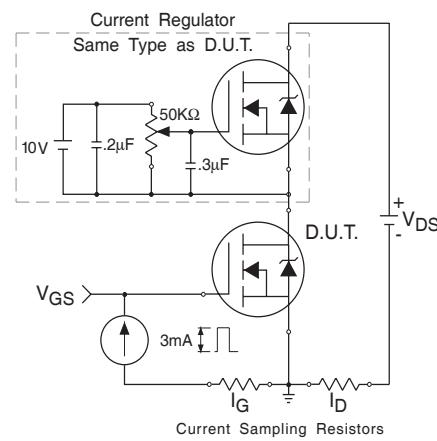
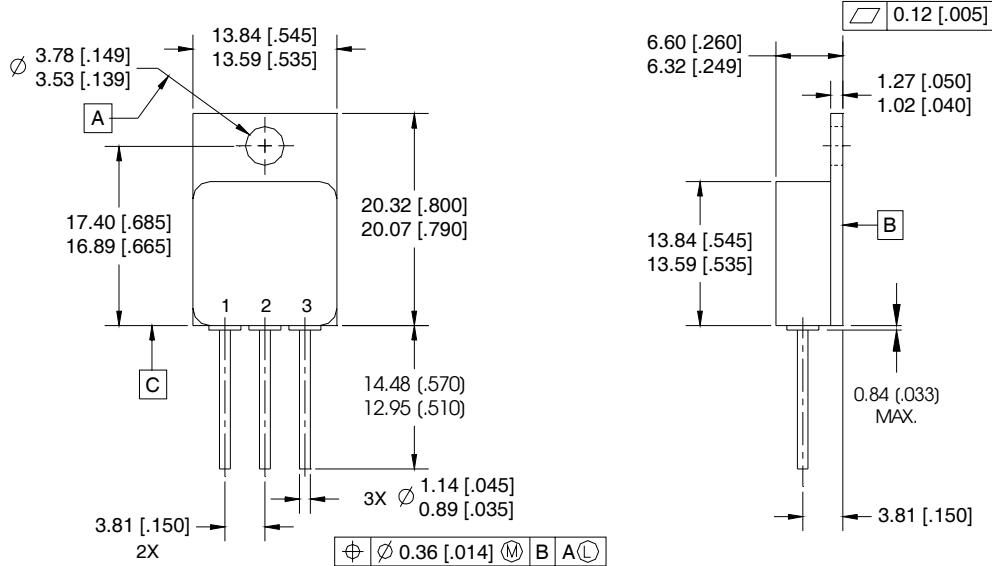


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform




Fig 13b. Gate Charge Test Circuit

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = 50V$, starting $T_J = 25^\circ C$, $L = 3.7mH$
Peak $I_L = 23A$, $V_{GS} = 10V$

- ③ $I_{SD} \leq 23A$, $di/dt \leq 170A/\mu s$,
 $V_{DD} \leq 400V$, $T_J \leq 150^\circ C$
- ④ Pulse width $\leq 300 \mu s$; Duty Cycle $\leq 2\%$

Case Outline and Dimensions — TO-254AA

NOTES:

1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
3. CONTROLLING DIMENSION: INCH.
4. CONFORMS TO JEDEC OUTLINE TO-254AA.

PIN ASSIGNMENTS

- 1 = DRAIN
- 2 = SOURCE
- 3 = GATE

CAUTION

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

International
IR Rectifier

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd. El Segundo, California 90245, USA Tel: (310) 252-7105

IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 05/2015