

IGBT - Power, Co-PAK N-Channel, Field Stop VII (FS7), Non SCR, TO247-3L 1200 V, 1.7 V, 40 A

FGHL40T120SWD

Description

Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 3-lead package, FGHL40T120SWD offers the optimum performance with low switching and conduction losses for high efficiency operations in various applications like Solar, UPS and ESS.

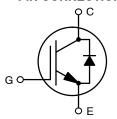
Features

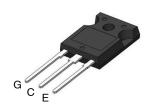
- Maximum Junction Temperature $T_J = 175$ °C
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- Smooth and Optimized Switching
- Low Switching Loss
- RoHS Compliant

Applications

- Boost and Inverter in Solar Applications
- UPS
- Energy Storage System

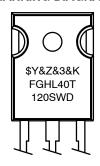
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Param	Symbol	Value	Unit	
Collector-to-Emitter Volta	V _{CES}	1200	V	
Gate-to-Emitter Voltage		V_{GES}	±20	
Transient Gate-to-Emitte	er Voltage		±30	
Collector Current	T _C = 25°C (Note 1)	I _C	70	Α
	T _C = 100°C	1	40	
Power Dissipation	T _C = 25°C	P _D	469	W
	T _C = 100°C		234	
Pulsed Collector Current	$T_C = 25^{\circ}C \text{ (Note 2)}$ $t_p = 10 \mu\text{s}$	I _{CM}	160	Α
Diode Forward $T_C = 25^{\circ}C$ (Note 1)		IF	80	
Current	T _C = 100°C	1	40	
$ \begin{array}{ll} \mbox{Pulsed Diode Maximum} & T_{C} = 25^{\circ}\mbox{C}, \\ \mbox{Forward Current} & t_{p} = 10 \ \mbox{μs} \end{array} $		I _{FM}	160	
Operating Junction and S Range	T _J , T _{stg}	-55 to +175	°C	
Lead Temperature for So	TL	260		


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Value limit by bond wire
- 2. Repetitive rating: Pulse width limited by max. junction temperature

BV _{CES}	V _{CE(SAT)}	lc
1200 V	1.7 V	40 A


PIN CONNECTIONS

TO-247-3LD CASE 340CX

MARKING DIAGRAM

\$Y = onsemi Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code &K = 2-Digit Lot Traceability Code FGHL40T120SWD = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
FGHL40T120SWD	TO-247 (Pb-Free)	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case for IGBT	$R_{\theta JC}$	0.32	°C/W
Thermal Resistance, Junction-to-Case for Diode	$R_{\theta JCD}$	0.57	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	40	

ELECTRICAL CHARACTERISTICS OF IGBT (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•	
Collector-to-Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 \text{ V}, I_{C} = 5 \text{ mA}$	1200	-	-	V
Collector-to-Emitter Breakdown Voltage	ΔBV_CES	V _{GE} = 0 V, I _C = 5 mA	-	1226	-	mV/°C
Temperature Coefficient	ΔT_{J}					
Zero Gate Voltage Collector Current	I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	-	-	40	μΑ
Gate-to-Emitter Leakage Current	I _{GES}	V _{GE} = 20 V, V _{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 40 \text{ mA}$	5.6	6.55	7.4	V
Collector-to-Emitter Saturation Voltage	V _{CE(sat)}	$V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}, T_{J} = 25^{\circ}\text{C}$	1.35	1.68	2.0	V
		V _{GE} = 15 V, I _C = 40 A, T _J = 175°C	-	2.26	-	
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ies}		-	3384	-	pF
Output Capacitance	C _{oes}	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	-	139	-	
Reverse Transfer Capacitance	C _{res}		-	16.2	-	
Gate Charge Total	Q_g		-	118	-	nC
Gate-to-Emitter Charge	Q _{ge}	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V},$ $I_{C} = 40 \text{ A}$	-	28.8	-	
Gate-to-Collector Charge	Q _{gc}		I	45.4	_	
SWITCHING CHARACTERISTICS						
Turn-on Delay Time	t _{d(on)}		-	22.4	-	ns
Turn-off Delay Time	t _{d(off)}		-	160	-	
Rise Time	t _r		-	14.4	-	
Fall Time	t _f	$V_{CE} = 600 \text{ V}, V_{GE} = 0/15 \text{ V}$ $I_{C} = 20 \text{ A R}_{G} = 4.7 \Omega \text{ T}_{J} = 25^{\circ}\text{C}$	-	78.4	-	
Turn-on Switching Loss	E _{on}	g	-	1.1	-	mJ
Turn-off Switching Loss	E _{off}		-	0.7	-	
Total Switching Loss	E _{ts}		-	1.8	-	
Turn-on Delay Time	t _{d(on)}		-	24.0	-	ns
Turn-off Delay Time	t _{d(off)}		-	118	-	
Rise Time	t _r		-	35.2	_	
Fall Time	t _f	$V_{CE} = 600 \text{ V}, V_{GE} = 0/15 \text{ V}$ $I_{C} = 40 \text{ A R}_{G} = 4.7 \Omega \text{ T}_{J} = 25^{\circ}\text{C}$	-	67.4	-	
Turn-on Switching Loss	E _{on}	5g	-	2.4	-	mJ
Turn-off Switching Loss	E _{off}		-	1.1	-	
Total Switching Loss	E _{ts}	1	-	3.5	-	

ELECTRICAL CHARACTERISTICS OF IGBT ($T_J = 25$ °C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS						
Turn-on Delay Time	t _{d(on)}		-	19.2	_	ns
Turn-off Delay Time	t _{d(off)}		-	197	-	
Rise Time	t _r		-	16.0	-	
Fall Time	t _f	$V_{CE} = 600 \text{ V}, V_{GE} = 0/15 \text{ V}$ $I_{C} = 20 \text{ A R}_{G} = 4.7 \Omega \text{ T}_{J} = 175^{\circ}\text{C}$	-	126	-	
Turn-on Switching Loss	E _{on}	c	-	1.8	-	mJ
Turn-off Switching Loss	E _{off}		-	1.1	-	
Total Switching Loss	E _{ts}		-	3.0	-	
Turn-on Delay Time	t _{d(on)}		-	20.8	-	ns
Turn-off Delay Time	t _{d(off)}		-	138	-	
Rise Time	t _r		-	35.2	-	
Fall Time	t _f	$V_{CE} = 600 \text{ V}, V_{GE} = 0/15 \text{ V}$ $I_{C} = 40 \text{ A R}_{G} = 4.7 \Omega \text{ T}_{J} = 175^{\circ}\text{C}$	-	99.6	-	
Turn-on Switching Loss	E _{on}		-	3.6	-	mJ
Turn-off Switching Loss	E _{off}		-	1.5	-	
Total Switching Loss	E _{ts}		-	5.2	-	
DIODE CHARACTERISTICS						
Forward Voltage	V _F	I _F = 40 A, T _J = 25°C	1.62	1.87	2.22	V
		I _F = 40 A, T _J = 175°C	-	1.84	-	
DIODE SWITCHING CHARACTERISTICS	S, INDUCTIVE LOAI	D				
Reverse Recovery Time	t _{rr}		-	113	-	ns
Reverse Recovery Charge	Q _{rr}	V _R = 600 V, I _F = 20 A,	-	1433	-	nC
Reverse Recovery Energy	E _{REC}	dl _F /dt = 1000 A/μs, T _J = 25°C	-	0.4	-	mJ
Peak Reverse Recovery Current	I _{RRM}		-	25.3	-	Α
Reverse Recovery Time	t _{rr}		-	185	-	ns
Reverse Recovery Charge	Q _{rr}	V _R = 600 V, I _F = 40 A,	-	2512	-	nC
Reverse Recovery Energy	E _{REC}	dl _F /dt = 1000 A/μs, T _J = 25°C	-	0.7	-	mJ
Peak Reverse Recovery Current	I _{RRM}		-	26.9	-	Α
Reverse Recovery Time	t _{rr}		-	193	-	ns
Reverse Recovery Charge	Q _{rr}	V _R = 600 V, I _F = 20 A,	-	3258	-	nC
Reverse Recovery Energy	E _{REC}	$V_R = 000 \text{ V, } I_F = 20 \text{ A,}$ $dI_F/dt = 1000 \text{ A/}\mu\text{s, } T_J = 175^{\circ}\text{C}$	-	1.0	-	mJ
Peak Reverse Recovery Current	I _{RRM}		-	33.6	-	Α
Reverse Recovery Time	t _{rr}		-	275	-	ns
Reverse Recovery Charge	Q _{rr}	V _R = 600 V, I _F = 40 A,	-	5211	-	nC
Reverse Recovery Energy	E _{REC}	dl _F /dt = 1000 A/μs, T _J = 175°C	-	1.7	-	mJ
						•

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

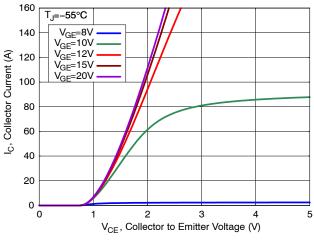


Figure 1. Output Characteristics

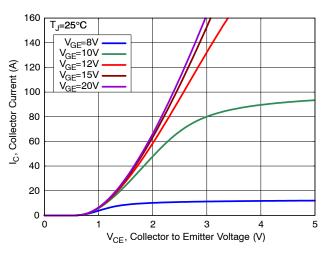


Figure 2. Output Characteristics

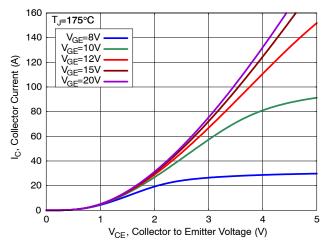


Figure 3. Output Characteristics

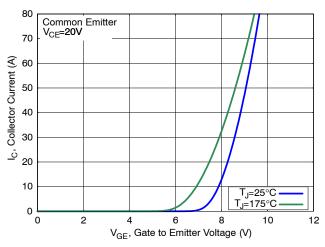


Figure 4. Transfer Characteristics

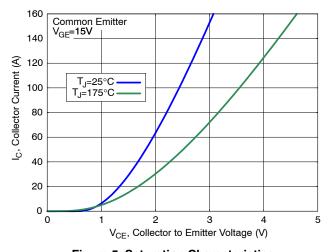


Figure 5. Saturation Characteristics

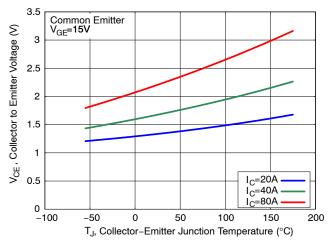


Figure 6. Saturation Voltage vs. Junction Temperature

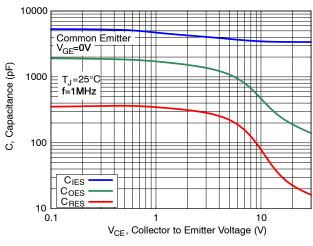


Figure 7. Capacitance Characteristics

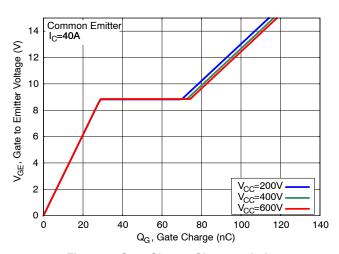


Figure 8. Gate Charge Characteristics

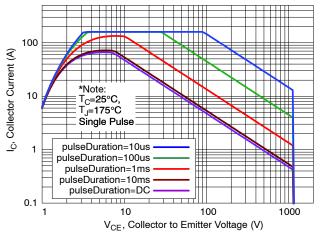


Figure 9. SOA Characteristics

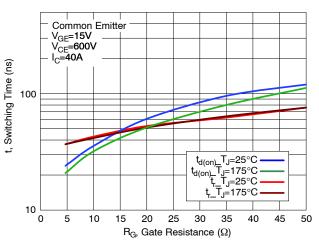


Figure 10. Turn-On Switching Time vs. Gate Resistance

Figure 11. Turn-Off Switching Time vs. Gate Resistance

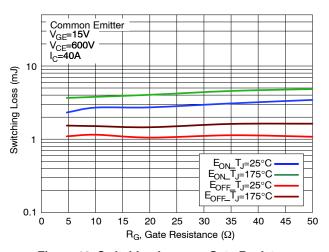


Figure 12. Switching Loss vs. Gate Resistance

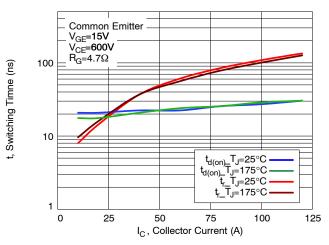
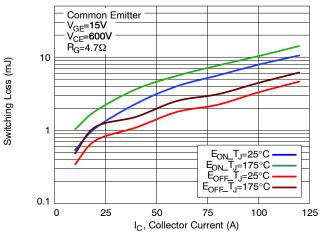



Figure 13. Turn-On Switching Time vs. Collector Current

Figure 14. Turn-Off Switching Time vs. Collector Current

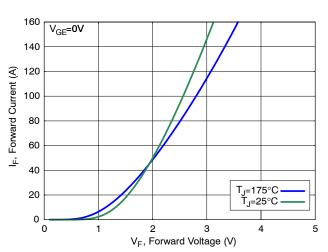
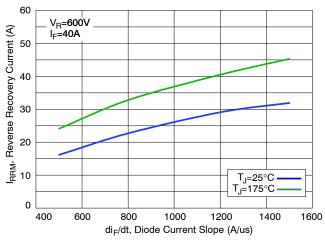



Figure 15. Switching Loss vs. Collector Current

Figure 16. Diode Forward Characteristics

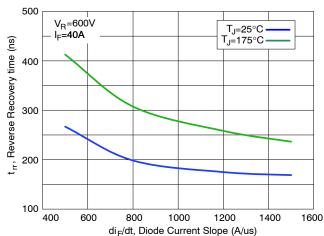


Figure 17. Diode Reverse Recovery Current

Figure 18. Diode Reverse Recovery Time

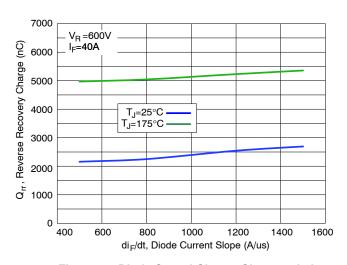


Figure 19. Diode Stored Charge Characteristics

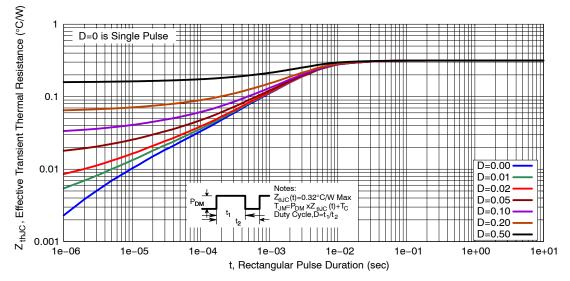


Figure 20. Transient Thermal Impedance of IGBT

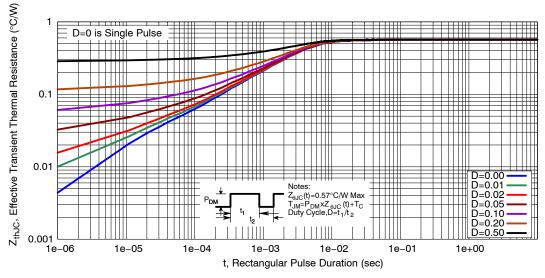
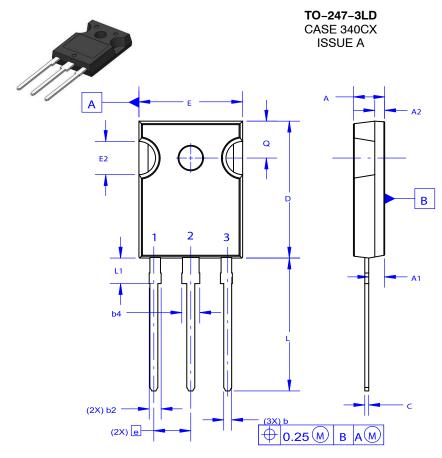
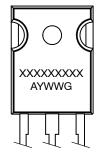



Figure 21. Transient Thermal Impedance of Diode

DATE 06 JUL 2020



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week

WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

φ _P —			Φ _{P1} D2
E1 —	2	-	D1

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
ØP1	6.60	6.80	7.00		

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Reportance Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales