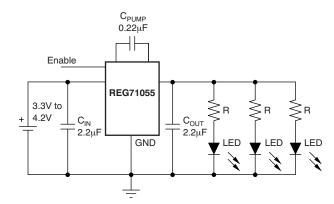


30-mA 5.5-V BOOST CHARGE PUMP


FEATURES

- Qualified for Automotive Applications
- Input Voltage Range: 3.0 V to 5.5 V
- Automatic Step-Up Operation
- Low Input Current Ripple
- Low Output Voltage Ripple
- Minimum Number of External Components, No Inductors
- 1-MHz Internal Oscillator Allows Small Capacitors
- Shutdown Mode
- Thermal and Current Limit Protection
- 5.5-V Output Voltage
- Small TSOT23-6 (DDC) Package

DESCRIPTION

The REG71055 is a switched capacitor voltage converter that produces a regulated, low-ripple output voltage from an unregulated input voltage. Input supply voltage of 3.0 V to 5.5 V makes the REG71055 ideal for a variety of battery sources, such as single-cell Li-lon, or two- and three-cell nickel- or alkaline-based chemistries.

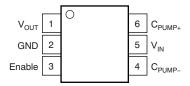
The input voltage may vary below the output voltage and the output remains in regulation. It works equally well for step-up applications without the need for an inductor, providing low EMI dc/dc conversion. The high switching frequency allows the use of small surface-mount capacitors, saving board space and reducing cost. The REG71055 is thermally protected and current limited, protecting the load and the regulator during fault conditions. Typical ground pin current (quiescent current) is 65 μ A with no load, and less than 1 μ A in shutdown mode.

White LED Backlight Application

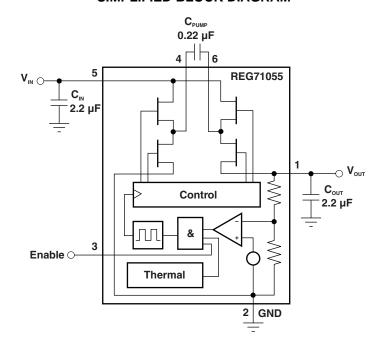
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SBAS477-JULY 2009 www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)


T _A	PACH	(AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 85°C	TSOT-23 - DDC	Reel of 3000	REG71055IDDCRQ1	GIXI	

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

DDC PACKAGE (TOP VIEW)

SIMPLIFIED BLOCK DIAGRAM

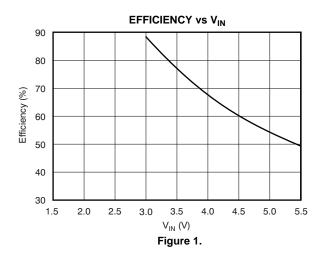
ABSOLUTE MAXIMUM RATINGS(1)

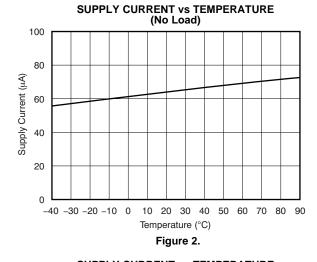
V_{IN}	Supply voltage	3 V to 6 V
V_{EN}	Enable input voltage	–0.3 V to V _{IN}
t _{SC}	Output short-circuit duration	Indefinite
T _{STG}	Storage temperature range	−65°C to 150°C
T _{LEAD}	Lead temperature (soldering, 10 seconds)	260°C

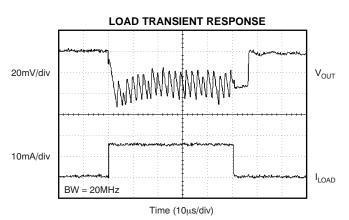
⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

ELECTRICAL CHARACTERISTICS

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $85^{\circ}C$ $T_A = 25^{\circ}C$, $V_{IN} = V_{OUT}/2 + 0.75$ V, $I_{OUT} = 10$ mA, $C_{IN} = C_{OUT} = 2.2$ μF , $C_{PUMP} = 0.22$ μF , and $V_{ENABLE} = 1.3$ V (unless otherwise


PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input voltage, tested startup		See conditions under Output Voltage with a resistive load no lower than typical Vout/lout	3.0		5.5	V
Output valtage		$I_{OUT} \le 10 \text{ mA}, 3.0 \text{ V} \le V_{IN} \le 5.5 \text{ V}$	5.2	5.5	5.8	V
Output voltage		$I_{OUT} \le 30 \text{ mA}, 3.25 \text{ V} \le V_{IN} \le 5.5 \text{ V}$	5.2	5.5	5.8	V
Nominal output current			30			mA
Short-circuit output current ⁽¹⁾				100		mA
Oscillator frequency (2)				1.0		MHz
Efficiency ⁽³⁾		I _{OUT} = 10 mA, V _{IN} = 3.0 V		90		%
Ripple voltage ⁽⁴⁾		I _{OUT} = 30 mA		35		mV_{PP}
Logic high input voltage, Enable		V _{IN} = 3.0V to 5.5 V		V _{IN}	V	
Logic low input voltage, Enable		V _{IN} = 3.0V to 5.5 V	-0.2		0.4	V
Logic high input current, Enable		V _{IN} = 3.0V to 5.5 V			100	nA
Logic low input current, Enable		V _{IN} = 3.0V to 5.5 V			100	nA
Thermal shutdown temperature				160		°C
Thermal shutdown recovery				140		°C
Quiescent current ⁽⁵⁾		I _{OUT} = 0 mA, V _{IN} = 5.5 V		65	100	μΑ
Quiescent current in shutdown mode		V _{IN} = 3.0 V to 5.5 V, Enable = 0 V		0.01	1	μΑ
Specified ambient temperature	T _A		-40		85	°C
Thermal resistance	θ_{JA}	TSOT23-6		220		°C/W


- (1) The supply current is twice the output short-circuit current.
- (2) The converter regulates by enabling and disabling periods of switching cycles. The switching frequency is the oscillator frequency during an active period.
- (3) See efficiency curves for other V_{IN}/V_{OUT} configurations.
- (4) Effective series resistance (ESR) of capacitors is $< 0.1\Omega$.
- (5) Measured when the device is not switching.


Instruments

www.ti.com

SBAS477-JULY 2009

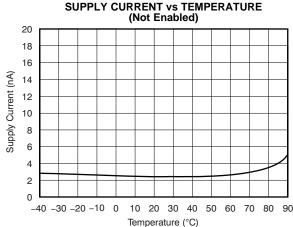
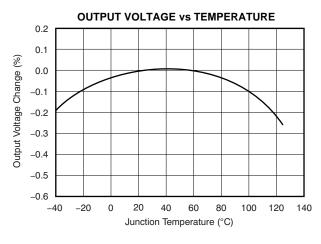



Figure 3.

OUTPUT VOLTAGE DRIFT HISTOGRAM 25 20 Percentage of Units (%) 15 10 5 < -116 < 52 > 76 < 100 > 100 < -140 < -92 < -20 < -68 < 28 V_{OUT} Drift (ppm/°C)

Figure 6.

Figure 4.

Figure 5.

TYPICAL CHARACTERISTICS (continued)

 T_A = 25°C, V_{IN} = $V_{OUT}/2$ + 0.75 V, I_{OUT} = 5 mA, C_{IN} = C_{OUT} = 2.2 μ F, C_{PUMP} = 0.22 μ F, and V_{ENABLE} = 1.3 V (unless otherwise noted)

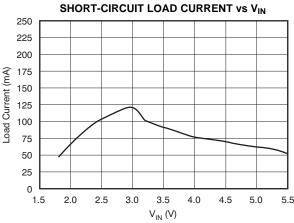


Figure 7.

SBAS477-JULY 2009

THEORY OF OPERATION

The REG71055 regulated charge pump provides a regulated output voltage for input voltages ranging from less than the output to greater than the output. This is accomplished by automatic mode switching within the device. When the input voltage is greater than the required output, the unit functions as a variable frequency switch-mode regulator. This operation is shown in Figure 8. Transistors Q_1 and Q_3 are held off, Q_4 is on, and Q_2 is switched as needed to maintain a regulated output voltage.

When the input voltage is less than the required output voltage, the device switches to a step-up or boost mode of operation, as shown in Figure 9.

A conversion clock of 50% duty cycle is generated. During the first half cycle the FET switches are configured as shown in Figure 9A, and C_{PUMP} charges to V_{IN} .

During the second half cycle the FET switched are configured as shown in Figure 9B, and the voltage on C_{PUMP} is added to V_{IN} . The output voltage is regulated by skipping clock cycles as necessary.

Peak Current Reduction

In normal operation, the charging of the pump and output capacitors usually leads to relatively high peak input currents which can be much higher than that of the average load current. The regulator incorporates circuitry to limit the input peak current, lowering the total EMI production of the device and lowering output voltage ripple and input current ripple. Input capacitor (C_{IN}) supplies most of the charge required by input current peaks.

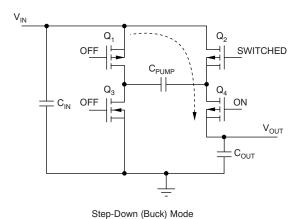


Figure 8. Simplified Schematic of the REG71055 Operating in the Step-Down Mode

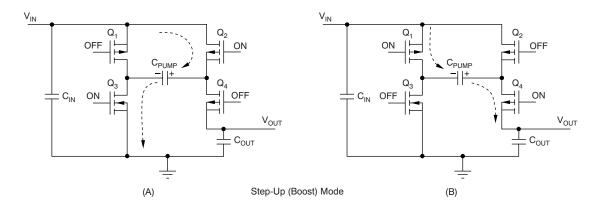


Figure 9. Simplified Schematic of the REG71055 Operating in the Step-Up or Boost Mode

Submit Documentation Feedback

INSTRUMENTS

www.ti.com

Protection

The regulator has thermal shutdown circuitry that protects it from damage caused by overload conditions. The thermal protection circuitry disables the output when the junction temperature reaches approximately 160°C, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is automatically reenabled. Continuously running the regulator into thermal shutdown can degrade reliability. The regulator also provides current limit to protect itself and the load.

Shutdown Mode

The EN pin enables the IC when pulled high and places it into energy-saving shutdown mode when pulled low. When in shutdown mode, the output is disconnected from the input and the quiescent current is reduced to 0.01 μ A typical. This shutdown mode functionality is only valid when V_{IN} is above the minimum recommended operating voltage. The EN pin cannot be left floating and must be actively terminated either high or low.

Capacitor Selection

For minimum output voltage ripple, the output capacitor C_{OUT} should be a ceramic, surface-mount type. Tantalum capacitors generally have a higher effective series resistance (ESR) and may contribute to higher output voltage ripple. Leaded capacitors also increase ripple due to the higher inductance of the package itself. To achieve best operation with low input voltage and high load current, the input and pump capacitors (C_{IN} and C_{PUMP} , respectively) should also be surface-mount ceramic types. In all cases, X7R or X5R dielectric are recommended. See the typical operating circuit shown in Figure 10 for component values.

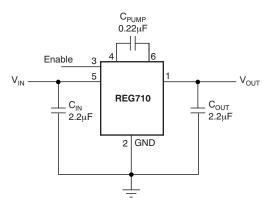


Figure 10. Typical Operating Circuit

With light loads or higher input voltage, a smaller $0.1\mu F$ pump capacitor (C_{PUMP}) and smaller $1\mu F$ input and output capacitors (C_{IN} and C_{OUT} , respectively) can be used. To minimize output voltage ripple, increase the output capacitor, C_{OUT} , to $10\mu F$ or larger.

The capacitors listed in Table 1 can be used with the REG71055. This table is only a representative list of compatible parts.

	Table 1. Suggested Supusitors											
MANUFACTURER	PART NUMBER	VALUE	TOLERANCE	DIELECTRIC MATERIAL	PACKAGE SIZE	RATED WORKING VOLTAGE						
Kemet	C1206C255K8RAC	2.2 μF	±10%	X7R	1206	10 V						
Kemet	C1206C224K8RAC	0.22 μF	±10%	X7R	1206	10 V						
	ECJ-2YBOJ225K	2.2 μF	±10%	X5R	805	6.3 V						
Panasonic	ECJ-2VBIC224K	0.22 μF	±10%	X7R	805	16 V						
	ECJ-2VBIC104	0.1 μF	±10%	X7R	805	16 V						
Taiyo Yuden	EMK316BJ225KL	2.2 μF	±10%	X7R	1206	16 V						
raiyo ruden	TKM316BJ224KF	0.22 μF	±10%	X7R	1206	25 V						

Table 1. Suggested Capacitors

TEXAS INSTRUMENTS

SBAS477-JULY 2009 www.ti.com

Efficiency

The efficiency of the charge pump regulator varies with the output voltage version, the applied input voltage, the load current, and the internal operation mode of the device.

The approximate efficiency is given by:

Efficiency (%) =
$$V_{OUT}/(2 \times V_{IN}) \times 100$$

(step-up operating mode)
or
$$\frac{V_{OUT}}{V_{IN}} \times 100$$

(step-down operating mode)

Table 2 lists the approximate values of the input voltage at which the device changes internal operating mode. See efficiency curves in the Typical Characteristics section for various loads and input voltages.

Table 2. Operating Mode Change vs VIN

PRODUCT	OPERATING MODE CHANGES AT V _{IN} OF
REG71055	Step-up only

Layout

Large transient currents flow in the V_{IN} , V_{OUT} , and GND traces. To minimize both input and output ripple, keep the capacitors as close as possible to the regulator using short, direct circuit traces.

A suggested printed circuit board (PCB) routing is shown in Figure 11. The trace lengths from the input and output capacitors have been kept as short as possible.

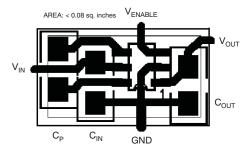


Figure 11. Suggested PCB Design for Minimum Ripple

APPLICATION CIRCUITS

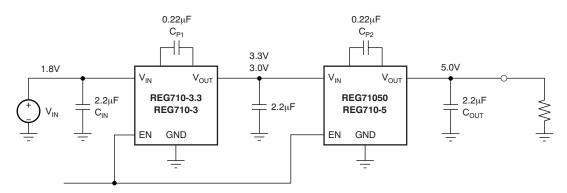


Figure 12. Circuit for Step-Up Operation From 1.8 V to 5 V With 10-mA Output Current

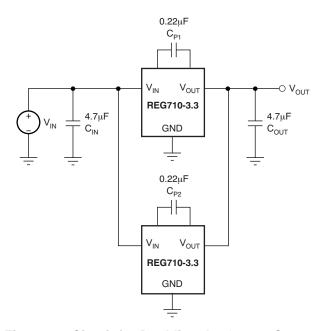


Figure 13. Circuit for Doubling the Output Current

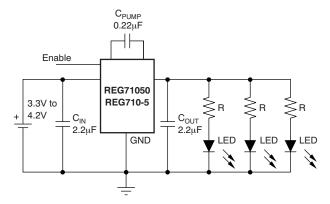


Figure 14. Circuit for Driving LEDs

SBAS477-JULY 2009 www.ti.com

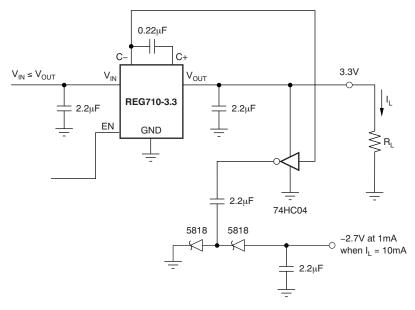


Figure 15. Negative Bias Supply

www.ti.com 7-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
REG71055IDDCRQ1	Active	Production	SOT-23- THIN (DDC) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GIXI

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF REG71055-Q1:

Catalog: REG71055

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

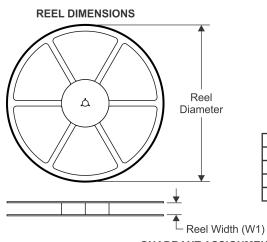
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

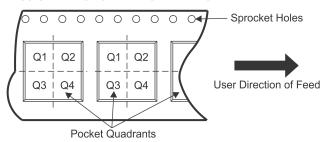
www.ti.com 7-May-2025


NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

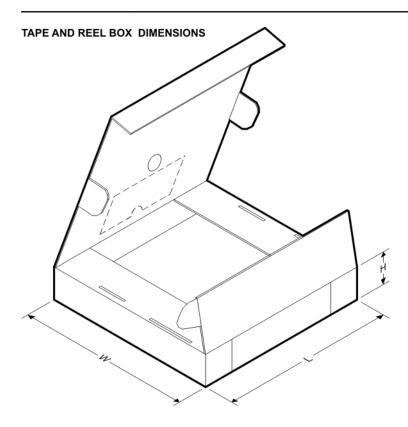
www.ti.com 5-Jan-2021


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

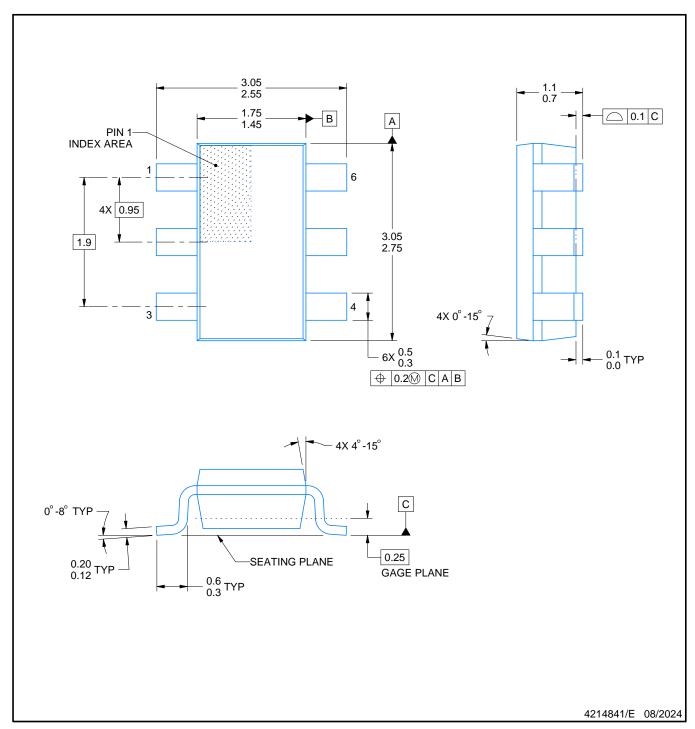
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
REG71055IDDCRQ1	SOT- 23-THIN	DDC	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

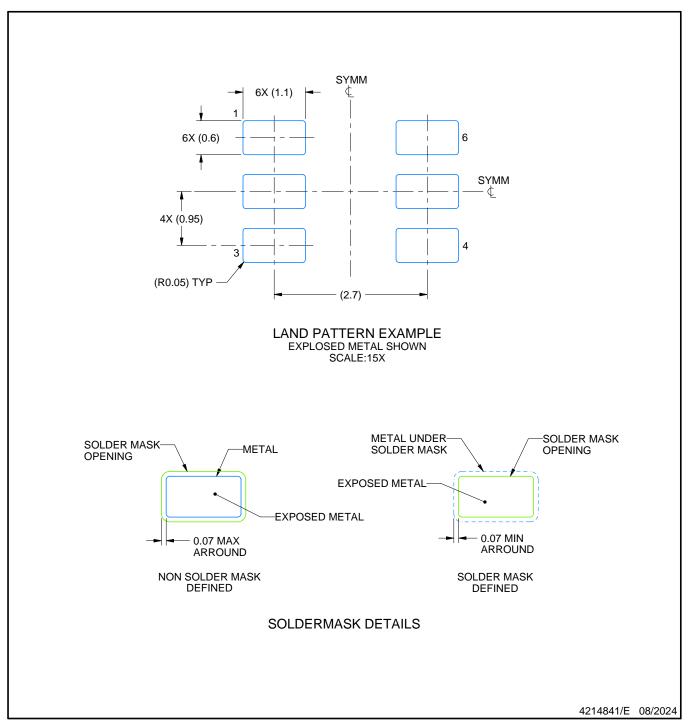
www.ti.com 5-Jan-2021



*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	REG71055IDDCRQ1	SOT-23-THIN	DDC	6	3000	200.0	183.0	25.0	

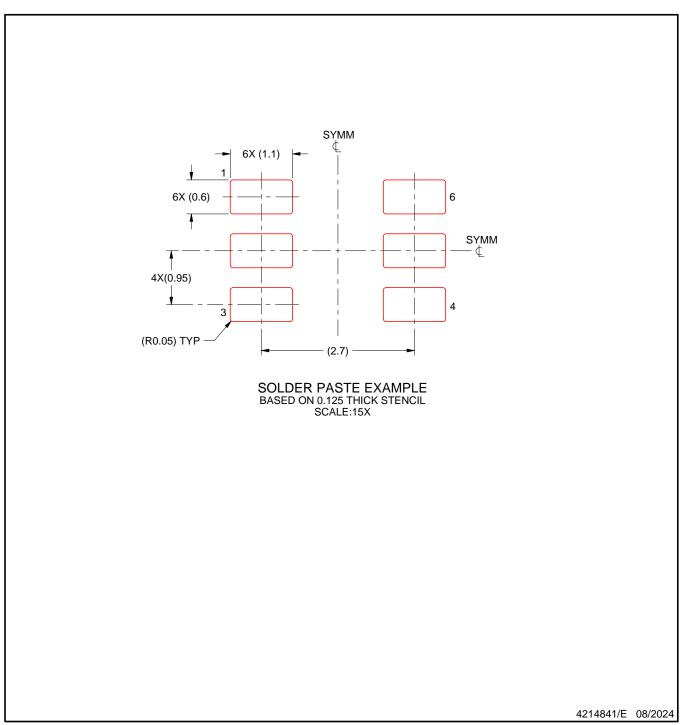
SMALL OUTLINE TRANSISTOR



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-193.

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 7. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated