

GaAs, Nonreflective, SP4T Switch 100 MHz to 4 GHz

FUNCTIONAL BLOCK DIAGRAM

Enhanced Product

HMC241ATCPZ-EP

FEATURES

Broadband frequency range: 100 MHz to 4 GHz Nonreflective 50 Ω design Low insertion loss: 0.7 dB at 2 GHz High isolation: 43 dB at 2 GHz High input linearity at 250 MHz to 4 GHz 1 dB compression (P1dB): 29 dBm typical Third order intercept (IP3): 47 dBm typical High power handling 28.5 dBm through path 25 dBm terminated path Single positive supply: 3 V to 5 V Integrated 2 to 4 line decoder 16-lead, 3 mm × 3 mm LFCSP package

ESD rating: 250 V (Class 1A)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range (-55°C to +125°C) Controlled manufacturing baseline One assembly/test site Product change notification Qualification data available on request

APPLICATIONS

Cellular/4 G infrastructure Wireless infrastructure Automotive telematics Mobile radios Test equipment

GENERAL DESCRIPTION

The HMC241ATCPZ-EP is a general-purpose, nonreflective, 100 MHz to 4 GHz single-pole, four-throw (SP4T) switch manufactured using a gallium arsenide (GaAs) process. This switch offers high isolation of 43 dB typical at 2 GHz, low insertion loss of 0.7 dB at 2 GHz, and on-chip termination of the isolated ports.

The on-chip circuitry allows the HMC241ATCPZ-EP to operate at a single, positive supply voltage range of 3 V to 5 V. This switch

requires two positive logic control voltages. The HMC241ATCPZ-EP includes an on-chip, binary two to four line decoder that provides logic control from two logic input lines to select one of the four radio frequency (RF) lines.

The HMC241ATCPZ-EP is available in a 3 mm \times 3 mm, 16lead LFCSP package. Additional application and technical information can be found in the HMC241ALP3E data sheet.

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700©2018 Analog Devices, Inc. All rights reserved.Technical Supportwww.analog.com

TABLE OF CONTENTS

Features	1
Enhanced Product Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4

ESD Caution	4
Pin Configuration and Function Descriptions	5
Interface Schematics	6
Typical Performance Charcteristics	7
Outline Dimensions	8
Ordering Guide	8

REVISION HISTORY

3/2018—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 3 V or 5 V, V_{CTRL} = 0 V or $V_{\text{DD}},$ T_{CASE} = 25°C, 50 Ω system, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Мах	Unit
FREQUENCY RANGE	f		0.1		4	GHz
INSERTION LOSS						
Between RFC and RF1 to RF4 (On)		100 MHz to 1 GHz		0.6	0.9	dB
		1 GHz to 2 GHz		0.7	1.0	dB
		2 GHz to 2.5 GHz		0.9	1.2	dB
		2.5 GHz to 4 GHz		1.2	1.5	dB
ISOLATION						
Between RFC and RF1 to RF4 (Off)		100 MHz to 1 GHz	40	45		dB
		1 GHz to 2 GHz	38	43		dB
		2 GHz to 2.5 GHz	35	41		dB
		2.5 GHz to 4 GHz	25	32		dB
RETURN LOSS						
RFC and RF1 to RF4 (On)		100 MHz to 2.5 GHz		18		dB
		2.5 GHz to 4 GHz		12		dB
RF1 to RF4 (Off)		100 MHz to 4 GHz		12		dB
SWITCHING		250 MHz to 4 GHz				
Rise and Fall Time	t _{RISE} , t _{FALL}	10 % to 90 % of RF output		30		ns
On and Off Time	t _{ON} , t _{OFF}	50 % V _{CTL} to 90 % of RF output		100		ns
INPUT LINEARITY ¹		250 MHz to 4 GHz				
1 dB Power Compression	P1dB	$V_{DD} = 3 V$		24		dBm
		$V_{DD} = 5 V$	23	29		dBm
Third-Order Intercept	IP3	10 dBm per tone, 1 MHz spacing				
-		$V_{DD} = 3 V$		50		dBm
		$V_{DD} = 5 V$		47		dBm
SUPPLY		V _{DD} pin				
Voltage	V _{DD}		3		5	v
Current	I _{DD}			2.5	5	mA
DIGITAL CONTROL INPUTS		CTRLA and CTRLB pins				
Voltage	V _{CTL}					
Low	VINL	$V_{DD} = 3 V$	0		0.8	v
		$V_{DD} = 5 V$	0		0.8	v
High	VINH	$V_{DD} = 3 V$	2		3	v
-		$V_{DD} = 5 V$	2		5	v
Current						
Low	I _{INL}			0.2		μA
High	I _{INH}			40		μA
OPERATING TEMPERATURE			-55		+125	°C

¹ Input linearity performance degrades at frequencies less than 250 MHz.

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.

Table 2.

Parameter	Rating		
Positive Supply Voltage (V _{DD})	7 V		
Digital Control Input Voltage	-0.5 V to V _{DD} +1 V		
RF Input Power (See Figure 2)			
$(f = 100 \text{ MHz to } 4 \text{ GHz}, T_{CASE} = 85^{\circ}\text{C})$			
$V_{DD} = 3 V$			
Through Path	23.5 dBm		
Terminated Path	20 dBm		
Hot Switching	17.5 dBm		
$V_{DD} = 5 V$			
Through Path	28.5 dBm		
Terminated Path	23.5 dBm		
Hot Switching	22.5 dBm		
Junction Temperature, T	150°C		
Storage Temperature Range	–65°C to +150°C		
Reflow Temperature (MSL3 Rating) ¹	260°C		
Junction to Case Thermal Resistance, θ_{JC}			
Through Path	144°C/W		
Terminated Path	300°C/W		
Electrostatic Discharge (ESD) Sensitivity			
Human Body Model (HBM)	250 V (Class 1A)		

¹ See the Ordering Guide section.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Figure 2. Maximum Input Power vs. Case Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

16633-003

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RF4	RF Port 4. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
2, 3, 10, 11, 13	NIC	Not Internally Connected. These pins must be connected to the printed circuit board (PCB) RF ground to maximize isolation.
4	RF3	RF Port 3. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
5, 14, 16	GND	Ground. The package bottom has an exposed metal pad that must connect to the PCB RF/dc ground.
6	V _{DD}	Supply Voltage.
7	В	Logic Control Input B. See Figure 5 for the control input interface schematic. See the recommended input control voltages range in Table 1 and the control voltage truth table (Table 4).
8	А	Logic Control Input A. See Figure 5 for the control input interface schematic. See the recommended input control voltages range in Table 1 and the control voltage truth table (Table 4).
9	RF2	RF Port 2. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
12	RF1	RF Port 1. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
15	RFC	RF Common Port. This pin is dc-coupled and matched to 50 Ω . A dc blocking capacitor is required on this pin.
	EPAD	Exposed Pad. The exposed pad must be connected to RF/dc ground.

Table 4. Control Voltage Truth Table

Digital C	Control Input	RF Paths			
CTRLA	CTRLB	RFC to RF1	RFC to RF2	RFC to RF3	RFC to RF4
Low	Low	Insertion loss (on)	Isolation (off)	Isolation (off)	Isolation (off)
High	Low	Isolation (off)	Insertion loss (on)	Isolation (off)	Isolation (off)
Low	High	Isolation (off)	Isolation (off)	Insertion loss (on)	Isolation (off)
High	High	Isolation (off)	Isolation (off)	Isolation (off)	Insertion loss (on)

INTERFACE SCHEMATICS

Figure 4. RFC to RF4 Interface Schematic

Figure 6. Supply Voltage Schematic

Figure 5. CTRLA and CTRLB Interface Schematic

TYPICAL PERFORMANCE CHARCTERISTICS

Figure 7. Insertion Loss Between RFC and RF1 vs. Frequency at Various Temperatures

OUTLINE DIMENSIONS

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	MSL Rating ²	Package Description	Package Option
HMC241ATCPZ-EP-PT	−55°C to +125°C	MSL3	16-Terminal Lead Frame Chip Scale Package [LFCSP]	CP-16-51
HMC241ATCPZ-EP-R7	–55°C to +125°C	MSL3	16-Terminal Lead Frame Chip Scale Package [LFCSP]	CP-16-51

¹ All models are RoHS compliant.

² See the Absolute Maximum Ratings section.

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D16633-0-3/18(0)

www.analog.com