

Metallized Polyester (PET) Capacitors in PCM 5 mm

Special Features

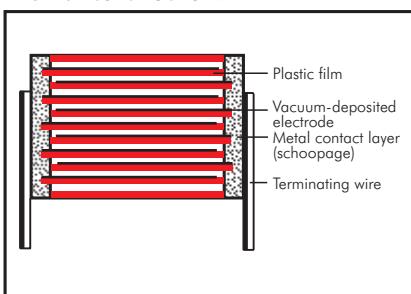
- High volume/capacitance ratio
- Self-healing
- According to RoHS 2002/95/EC

Typical Applications

For general DC-applications e.g.

- By-pass
- Blocking
- Coupling and decoupling
- Timing

Construction


Dielectric:

Polyethylene-terephthalate (PET) film

Capacitor electrodes:

Vacuum-deposited

Internal construction:

Encapsulation:

Solvent-resistant, flame-retardent plastic case with epoxy resin seal, UL 94 V-0

Terminations:

Tinned wire.

Marking:

Colour: Red. Marking: Silver/White.

Epoxy resin seal: Red

Electrical Data

Capacitance range:

1000 pF to 10 μ F (E12-values on request)

Rated voltages:

16 VDC, 50 VDC, 63 VDC, 100 VDC, 250 VDC, 400 VDC, 630 VDC

Capacitance tolerances:

$\pm 20\%$, $\pm 10\%$, $\pm 5\%$

Operating temperature range:

-55° C to +100° C

Climatic test category:

55/100/21 in accordance with IEC

Insulation resistance

at +20° C:

Measuring time: 1 min.

U_r	U_{test}	$C \leq 0.33 \mu F$	$0.33 \mu F < C \leq 10 \mu F$
16 VDC	10V	$\geq 3.75 \times 10^3 M\Omega$ (mean value: $1 \times 10^4 M\Omega$)	$\geq 1000 \text{ sec} (M\Omega \times \mu F)$ (mean value: 3000 sec)
50 VDC	10V	$\geq 5 \times 10^3 M\Omega$ (mean value: $3 \times 10^4 M\Omega$)	$\geq 1000 \text{ sec} (M\Omega \times \mu F)$ (mean value: 3000 sec)
63 VDC	50V	$\geq 1 \times 10^4 M\Omega$ (mean value: $5 \times 10^4 M\Omega$)	$\geq 1250 \text{ sec} (M\Omega \times \mu F)$ (mean value: 3000 sec)
≥ 100 VDC	100V	$\geq 1.5 \times 10^4 M\Omega$ (mean value: $1 \times 10^5 M\Omega$)	$\geq 3000 \text{ sec} (M\Omega \times \mu F)$ (mean value: 6000 sec)

Dissipation factors at + 20° C: $\tan \delta$

at f	$C \leq 0.1 \mu F$	$0.1 \mu F < C \leq 1.0 \mu F$	$C > 1.0 \mu F$
1 kHz	$\leq 8 \times 10^{-3}$	$\leq 8 \times 10^{-3}$	$\leq 10 \times 10^{-3}$
10 kHz	$\leq 15 \times 10^{-3}$	$\leq 15 \times 10^{-3}$	-
100 kHz	$\leq 30 \times 10^{-3}$	-	-

Maximum pulse rise time:

Capacitance pF/ μ F	Pulse rise time V/ μ sec max. operation/test						
	16 VDC	50 VDC	63 VDC	100 VDC	250 VDC	400 VDC	630 VDC
1000 ... 6800	-	-	40/400	40/400	50/500	80/800	110/1100
0.01 ... 0.022	-	-	35/350	35/350	50/500	80/800	110/1100
0.033 ... 0.068	-	-	20/200	25/250	50/500	80/800	-
0.1 ... 0.47	-	10/100	15/150	20/200	50/500	80/800	-
0.68 ... 1.0	-	8/80	12/120	15/150	-	-	-
1.5 ... 3.3	-	8/80	7.5/75	10/100	-	-	-
4.7	4/40	5/50	5/50	-	-	-	-
6.8 ... 10	3/30	3/30	-	-	-	-	-

for pulses equal to the rated voltage

Mechanical Tests

Pull test on leads:

10 N in direction of leads according to IEC 60068-2-21

Vibration:

6 hours at 10 ... 2000 Hz and 0.75 mm displacement amplitude or 10 g in accordance with IEC 60068-2-6

Low air density:

1kPa = 10 mbar in accordance with IEC 60068-2-13

Bump test:

4000 bumps at 390 m/sec² in accordance with IEC 60068-2-29

Packing

Available taped and reeled.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

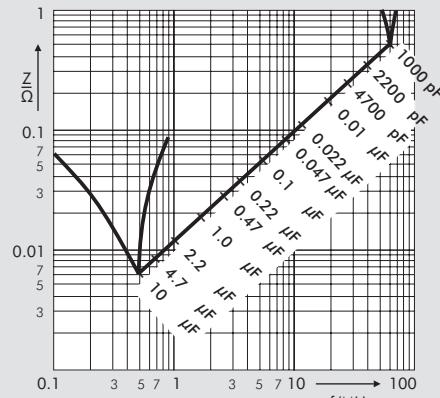
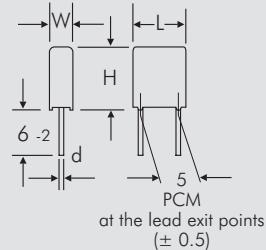
Continuation

General Data

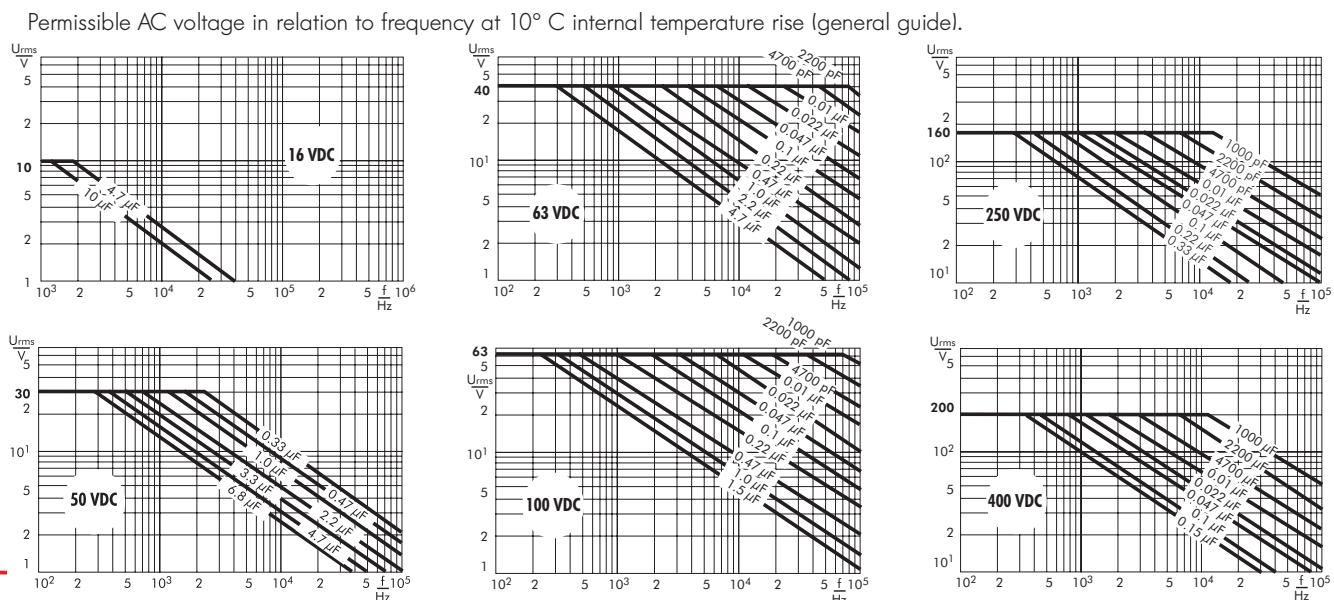
Capacitance	16 VDC/10 VAC* W H L PCM				50 VDC/30 VAC* W H L PCM				63 VDC/40 VAC* W H L PCM				100 VDC/63 VAC* W H L PCM				250 VDC/160 VAC* W H L PCM				400 VDC/200 VAC* W H L PCM				630 VDC/220 VAC* W H L PCM						
	W	H	L	PCM	W	H	L	PCM	W	H	L	PCM	W	H	L	PCM	W	H	L	PCM	W	H	L	PCM	W	H	L	PCM			
1000 pF									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5			
1500 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5			
2200 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5			
3300 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	3	7.5	7.2	5			
4700 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	3.5	8.5	7.2	5			
6800 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	4.5	9.5	7.2	5			
0.01 μ F									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	5.5	11.5	7.2	5			
0.015 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	7.2	13	7.2	5			
0.022 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	2.5	6.5	7.2	5	3.5	8.5	7.2	5							
0.033 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	3.5	8.5	7.2	5	4.5	9.5	7.2	5							
0.047 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	3.5	8.5	7.2	5	4.5	9.5	7.2	5							
0.068 "									2.5	6.5	7.2	5	2.5	6.5	7.2	5	3.5	8.5	7.2	5	5.5	11.5	7.2	5							
0.1 μ F									2.5	6.5	7.2	5	2.5	6.5	7.2	5	4.5	9.5	7.2	5	7.2	13	7.2	5							
0.15 "									2.5	6.5	7.2	5	3.5	8.5	7.2	5	5	10	7.2	5	8.5	14	7.2	5	5	10	7.2	5			
0.22 "									2.5	6.5	7.2	5	3.5	8.5	7.2	5	5.5	11.5	7.2	5	7.2	13	7.2	5							
0.33 "									2.5	6.5	7.2	5	4.5	9.5	7.2	5	7.2	13	7.2	5											
0.47 "									2.5	6.5	7.2	5	3.5	8.5	7.2	5	4.5	9.5	7.2	5											
0.68 "									2.5	6.5	7.2	5	4.5	9.5	7.2	5	5	10	7.2	5											
1.0 μ F									3.5	8.5	7.2	5	5	10	7.2	5	7.2	13	7.2	5											
1.5 "									4.5	9.5	7.2	5	5.5	11.5	7.2	5	8.5	14	7.2	5											
2.2 "									5	10	7.2	5	7.2	13	7.2	5															
3.3 "									5.5	11.5	7.2	5	7.2	13	7.2	5															
4.7 "									5.5	11.5	7.2	5	8.5	14	7.2	5															
6.8 "									7.2	13	7.2	5	8.5	14	7.2	5															
10 μ F	8.5	14	7.2	5																											

* AC voltage: $f = 50$ Hz; $1.4 \times U_{rms} + UDC \leq U_r$

** PCM = Printed circuit module = lead spacing



■ New values and box sizes.

Dims. in mm.


Taped version see page 100.

$d = 0.5 \text{ } \phi$

Rights reserved to amend design data without prior notification.

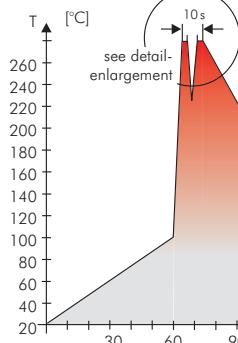
Permissible AC voltage in relation to frequency at 10° C internal temperature rise (general guide).

Recommendation for Processing and Application of Through-Hole Capacitors

Soldering Process

A preheating of through-hole WIMA capacitors is allowed for temperatures $T_{max} < 100^{\circ}\text{C}$.

In practice a preheating duration of $t < 5$ min. has been proven to be best.


Single wave soldering

Soldering bath temperature: $T < 260^{\circ}\text{C}$
Immersion time: $t < 5$ sec

Double wave soldering

Soldering bath temperature: $T < 260^{\circ}\text{C}$
Immersion time: $2 \times t < 3$ sec

Wave soldering

Temperature/time graph for the maximum permissible solder bath temperature for the wave soldering of through-hole WIMA capacitors

WIMA Quality and Environmental Philosophy

ISO 9001:2000 Certification

ISO 9001:2000 is an international basic standard of quality assurance systems for all branches of industry. The approval according to ISO 9001:2000 of our factories by the VDE inspectorate certifies that organisation, equipment and monitoring of quality assurance in our factories correspond to internationally recognized standards.

WIMA WPSCS

The WIMA Process Control System (WPSCS) is a quality surveillance and optimization system developed by WIMA. WPSCS is a major part of the quality-oriented WIMA production. Points of application of WPSCS during production process:

- **incoming material inspection**
- **metallization**
- **film inspection**
- **schoopage**
- **pre-heating**
- **lead attachment**
- **cast resin preparation/ encapsulation**
- **100% final inspection**
- **AQL check**

WIMA Environmental Policy

All WIMA capacitors, irrespective of whether through-hole devices or SMD, are made of environmentally friendly materials. Neither during manufacture nor in the product itself any toxic substances are used, e.g.

<ul style="list-style-type: none"> – Lead – PCB – CFC – Hydrocarbon chloride – Chromium 6+ 	<ul style="list-style-type: none"> – PBB/PBDE – Arsenic – Cadmium – Mercury – etc.
--	--

We merely use pure, recyclable materials for packing our components, such as:

- **carton**
- **cardboard**
- **adhesive tape made of paper**
- **polystyrene**

We almost completely refrain from using packing materials such as:

- **foamed polystyrene (Styropor®)**
- **adhesive tapes made of plastic**
- **metal clips**

RoHS Compliance

According to the RoHS Directive 2002/95/EC certain hazardous substances like e.g. lead, cadmium, mercury must not be used any longer in electronic equipment as of July 1st, 2006. For the sake of the environment WIMA has refrained from using such substances since years already.

WIMA Kondensatoren sind bleifrei
konform RoHS 2002/95/EG

WIMA capacitors are lead free
in accordance with RoHS 2002/95/EC

Tape for lead-free WIMA capacitors

ISO 14001:2005

WIMA's environmental management has been established in accordance with the guidelines of ISO 14001. The certification is under preparation and is expected to be accomplished by June 2006.

Typical Dimensions for Taping Configuration

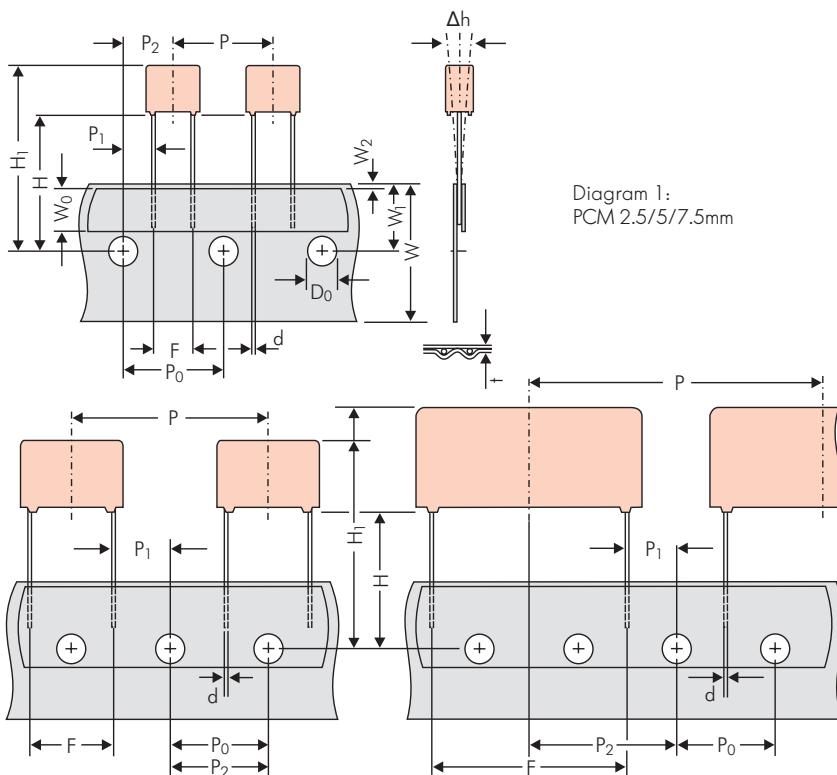


Diagram 2: PCM 10/15 mm

Diagram 3: PCM 22.5 and 27.5*mm

*PCM 27.5 taping possible with two feed holes between components

Dimensions for Radial Taping							
Designation	Symbol	PCM 2.5 taping	PCM 5 taping	PCM 7.5 taping	PCM 10 taping*	PCM 15 taping*	PCM 22.5 taping
Carrier tape width	W	18.0 ± 0.5	18.0 ± 0.5	18.0 ± 0.5	18.0 ± 0.5	18.0 ± 0.5	18.0 ± 0.5
Hold-down tape width	W ₀	6.0 for hot-sealing adhesive tape	6.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape
Hole position	W ₁	9.0 ± 0.5	9.0 ± 0.5	9.0 ± 0.5	9.0 ± 0.5	9.0 ± 0.5	9.0 ± 0.5
Hold-down tape position	W ₂	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.			
Feed hole diameter	D ₀	4.0 ± 0.2	4.0 ± 0.2	4.0 ± 0.2	4.0 ± 0.2	4.0 ± 0.2	4.0 ± 0.2
Pitch of component	P	12.7 ± 1.0	12.7 ± 1.0	12.7 ± 1.0	25.4 ± 1.0	25.4 ± 1.0	38.1 ± 1.5 or 50.8 ± 1.5
Feed hole pitch	P ₀	12.7 ± 0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ± 0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ± 0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ± 0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ± 0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ± 0.3 cumulative pitch error max. 1.0 mm/20 pitch
Feed hole centre to lead	P ₁	5.1 ± 0.5	3.85 ± 0.7	2.6 ± 0.7	7.7 ± 0.7	5.2 ± 0.7	7.8 ± 0.7
Hole centre to component centre	P ₂	6.35 ± 1.3	6.35 ± 1.3	6.35 ± 1.3	12.7 ± 1.3	12.7 ± 1.3	19.05 ± 1.3
Feed hole centre to bottom edge of the component	H ▲	16.5 ± 0.3 18.5 ± 0.5	16.5 ± 0.3 18.5 ± 0.5	16.5 ± 0.5 18.5 ± 0.5	16.5 ± 0.5 18.5 ± 0.5	16.5 ± 0.5 18.5 ± 0.5	16.5 ± 0.5 18.5 ± 0.5
Feed hole centre to top edge of the component	H ₁	H+H _{component} < H ₁ 32.25 max.	H+H _{component} < H ₁ 32.25 max.	H+H _{component} < H ₁ 24.5 to 31.5	H+H _{component} < H ₁ 25.0 to 31.5	H+H _{component} < H ₁ 26.0 to 37.0	H+H _{component} < H ₁ 30.0 to 43.0
Lead spacing at upper edge of carrier tape	F	2.5 ± 0.5	5.0 $^{+0.8}_{-0.2}$	7.5 ± 0.8	10.0 ± 0.8	15 ± 0.8	22.5 ± 0.8
Lead diameter	d	0.4 ± 0.05	0.5 ± 0.05	$^{+0.5}_{-0.5}$ $^{+0.07}_{-0.05}$	$^{+0.5}_{-0.5}$ $^{+0.07}_{-0.05}$	0.8 $^{+0.08}_{-0.05}$	$^{+0.8}_{-0.05}$ $^{+0.1}_{-0.05}$
Component alignment	Δh	± 2.0 max.	± 2.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.
Total tape thickness	t	0.7 ± 0.2	0.7 ± 0.2	0.7 ± 0.2	0.7 ± 0.2	0.7 ± 0.2	0.7 ± 0.2
Package (see also page 101)	▲	ROLL/AMMO		AMMO			
		REEL $\varnothing 360$ max. $\varnothing 30 \pm 1$	B 52 ± 2 58 ± 2 } depending on comp. dimensions	REEL $\varnothing 360$ max. $\varnothing 30 \pm 1$	B 52 ± 2 58 ± 2 or REEL $\varnothing 500$ max. $\varnothing 25 \pm 1$	B 54 ± 2 60 ± 2 } depending on PCM and component dimensions	
Unit		see details page 103.					

▲ Please give „H“ dimensions and desired packaging type when ordering.

Dims in mm.

* Diameter of leads see General Data.

Please clarify customer-specific deviations with the manufacturer.

* PCM 10 and PCM 15 can be crimped to PCM 7.5.

Position of components according to PCM 7.5 (sketch 1). P₀ = 12.7 or 15.0 is possible