MOSFET – Power, N-Channel, SUPERFET® III, Easy Drive

650 V, 75 A, 23 m Ω

Description

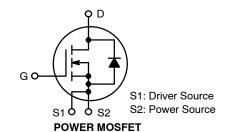
SUPERFET III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provides superior switching performance, and withstand extreme dv/dt rate.

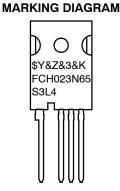
Consequently, SUPERFET III MOSFET Easy drive series helps manage EMI issues and allows for easier design implementation.

Features

- 700 V @ T_J = 150°C
- Typ. $R_{DS(on)} = 19.5 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 222 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 1980 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications


- Telecom / Server Power Supplies
- Industrial Power Supplies
- UPS / Solar


ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
650 V	23 mΩ @ 10 V	75 A

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Data Code (Year & Week) &K = Lot FCH023N65S3L4 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise noted)

Symbol	Parameter		Value	Unit
V_{DSS}	Drain to Source Voltage		650	V
V_{GSS}	Gate to Source Voltage – DC		±30	V
		- AC (f > 1 Hz)	±30	
I _D	Drain Current	– Continuous (T _C = 25°C)	75	А
		- Continuous (T _C = 100°C)	65.8	
I _{DM}	Drain Current	- Pulsed (Note 1)	300	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		2025	mJ
I _{AS}	Avalanche Current (Note 2)		15	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		5.95	mJ
dv/dt	MOSFET dv/dt		100	V/ns
	Peak Diode Recovery dv/dt (Note 3)		20	
P_{D}	Power Dissipation (T _C = 25°C)		595	W
		- Derate Above 25°C	4.76	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T_L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Repetitive rating: pulse width limited by maximum junction temperature.
 2. $I_{AS}=15$ A, $R_{G}=25$ Ω , starting $T_{J}=25^{\circ}C$.
 3. $I_{SD}\leq 37.5$ A, di/dt ≤ 200 A/ μ s, $V_{DD}\leq 400$ V, starting $T_{J}=25^{\circ}C$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ hetaJC}$	Thermal Resistance, Junction to Case, Max.	0.21	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	40	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
FCH023N65S3L4	FCH023N65S3L4	TO-247 A04	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
FF CHARACTERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$	650	-	_	V
		$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 150^{\circ}\text{C}$	700	-	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C	-	0.72	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V	-	-	1	μΑ
		V _{DS} = 520 V, T _C = 125°C	-	6.8	-	
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA
N CHARACTERISTICS						
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 3.0 \text{ mA}$	2.5	-	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 37.5 A	-	19.5	23	mΩ
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 37.5 A	-	66	-	S

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
YNAMIC CHA	ARACTERISTICS			•	•	•
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz	-	7160	_	pF
C _{oss}	Output Capacitance]	_	195	_	pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	_	1980	_	pF
C _{oss(er.)}	Energy Related Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	_	298	_	pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 400 \text{ V}, I_{D} = 37.5 \text{ A}, V_{GS} = 10 \text{ V}$ (Note 4)	_	222	_	nC
Q _{gs}	Gate to Source Gate Charge		_	54	-	nC
Q _{gd}	Gate to Drain "Miller" Charge]	_	90	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	ı	0.9	-	Ω
WITCHING C	HARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 37.5 \text{ A},$	-	43	_	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, R_g = 2 \Omega$ (Note 4)	-	30	-	ns
t _{d(off)}	Turn-Off Delay Time]	-	130	-	ns
t _f	Turn-Off Fall Time]	-	7	_	ns
SOURCE-DRA	IN DIODE CHARACTERISTICS					
I _S	Maximum Continuous Drain to Source Diode Forward Current		-	_	75	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	300	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 37.5 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 37.5 A,	-	600	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	-	17.9	_	μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

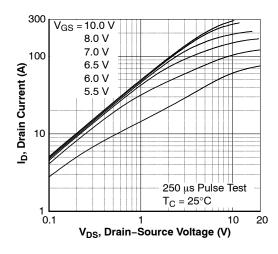


Figure 1. On-Region Characteristics

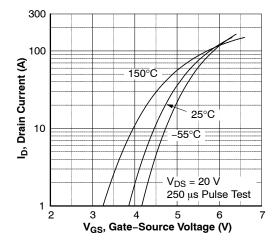


Figure 2. Transfer Characteristics

^{4.} Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

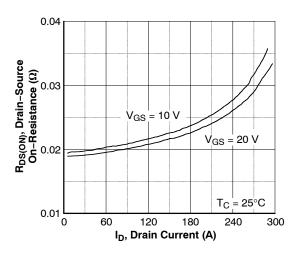


Figure 3. On-Resistance Variation vs.Drain Current and Gate Voltage

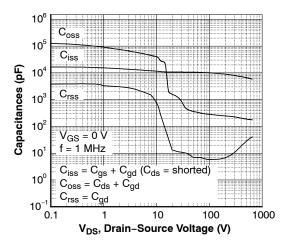


Figure 5. Capacitance Characteristics

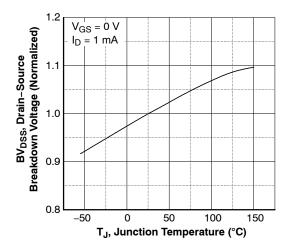


Figure 7. Breakdown Voltage Variation vs. Temperature

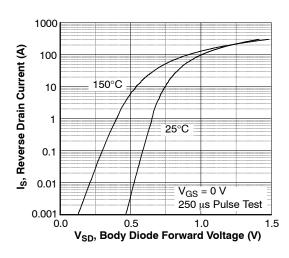


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

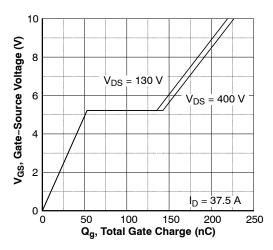


Figure 6. Gate Charge Characteristics

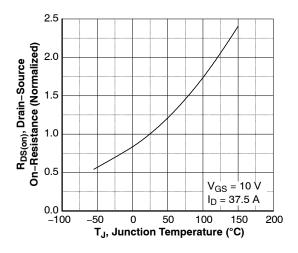


Figure 8. On-Resistance Variation vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

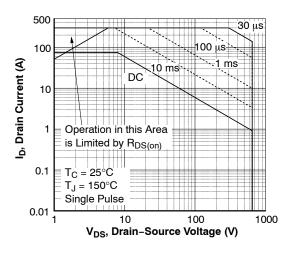


Figure 9. Maximum Safe Operating Area

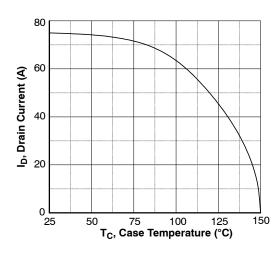


Figure 10. Maximum Drain Current vs. Case Temperature

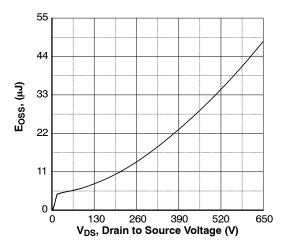


Figure 11. E_{OSS} vs. Drain to Source Voltage

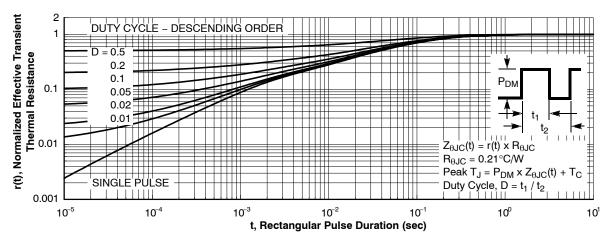


Figure 12. Transient Thermal Response Curve

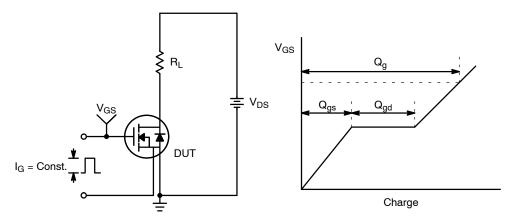


Figure 13. Gate Charge Test Circuit & Waveform

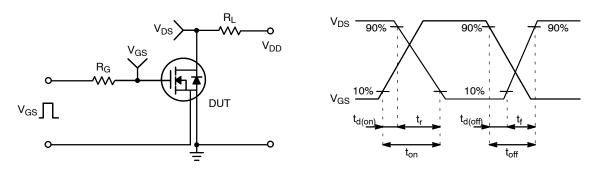


Figure 14. Resistive Switching Test Circuit & Waveforms

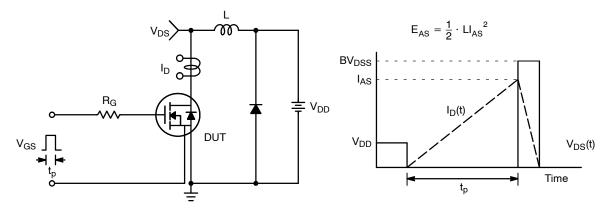
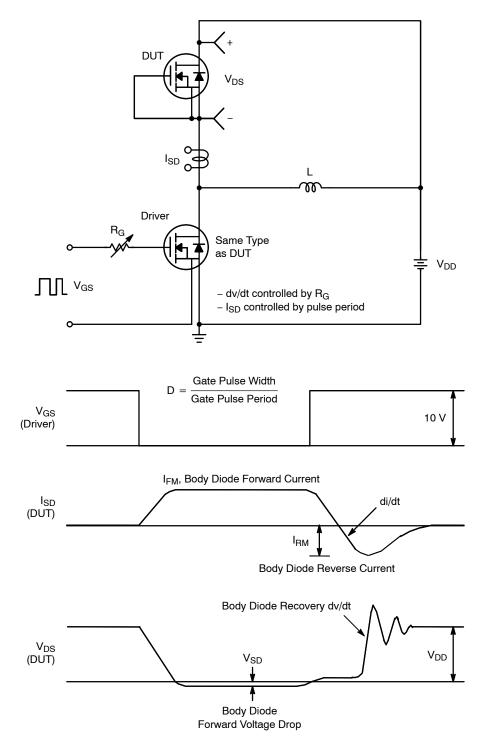
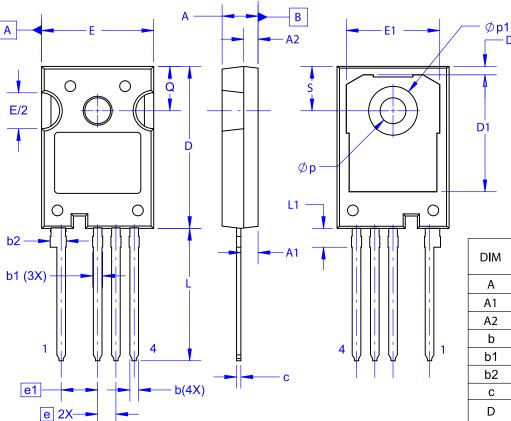


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms




Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

TO-247-4LD CASE 340CJ **ISSUE A**

DATE 16 SEP 2019

D2

NOTES:

0.254 M

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5-2009.

DIM	MIN	NOM	MAX
Α	4.80	5.00	5.20
A1	2.10	2.40	2.70
A2	1.80	2.00	2.20
b	1.07	1.20	1.33
b1	1.20	1.40	1.60
b2	2.02	2.22	2.42
С	0.50	0.60	0.70
D	22.34	22.54	22.74
D1	16.00	16.25	16.50
D2	0.97	1.17	1.37
е	2.54 BSC		
e1	Ę	5.08 BSC	
E	15.40	15.60	15.80
E1	12.80	13.00	13.20
E/2	4.80	5.00	5.20
L	18.22	18.42	18.62
L1	2.42	2.62	2.82
р	3.40	3.60	3.80
p1	6.60	6.80	7.00
Q	5.97	6.17	6.37
S	5.97	6.17	6.37

MILLIMETERS

DOCUMENT NUMBER:	98AON13852G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-4LD		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales