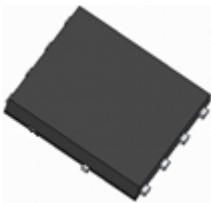
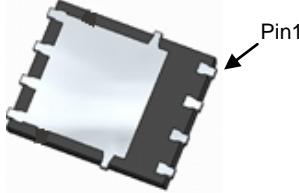


Features

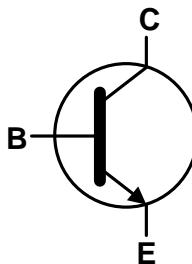
- $BV_{CEO} > 60V$
- $I_C = 3A$ Continuous Collector Current
- $I_{CM} = 8A$ Peak Pulse Current
- $R_{CE(sat)} < 90m\Omega$
- Rated to $+175^\circ C$ – Ideal for High Ambient Temperature Environments
- Wettable Flank for Improved Optical Inspection
- **Lead-Free Finish; RoHS Compliant (Notes 1 & 2)**
- **Halogen and Antimony Free. "Green" Device (Note 3)**
- The DXTN3C60PSQ is suitable for automotive applications requiring specific change control; it is AEC-Q101 qualified, PPAP capable, and manufactured in IATF 16949 certified facilities.
- <https://www.diodes.com/quality/product-definitions/>

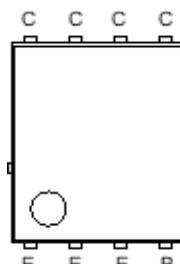

Mechanical Data

- Case: PowerDI[®] 5060-8
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 3 per J-STD-020
- Terminal Finish - Matte Tin Annealed over Copper Leadframe; Solderable per MIL-STD-202, Method 208 (e3)
- Weight: 0.097 grams (Approximate)


Applications

- Power Management
- Load Switch
- Linear Mode Voltage Regulator
- Backlighting Applications

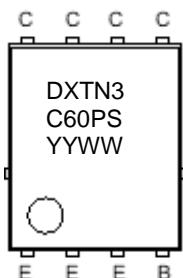

PowerDI5060-8 (SWP) (Type Q)


Top View

Bottom View

Internal Schematic

Top View
Pin Configuration


Ordering Information (Note 4)

Part Number	Compliance	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
DXTN3C60PSQ-13	Automotive	DXTN3C60PS	13	12	2,500

Notes:

1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
2. See <https://www.diodes.com/quality/lead-free/> for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
4. For packaging details, go to our website at <https://www.diodes.com/design/support/packaging/diodes-packaging/>.

Marking Information

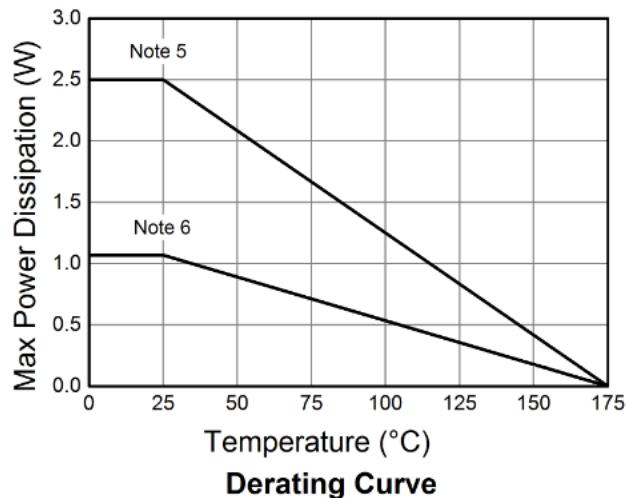
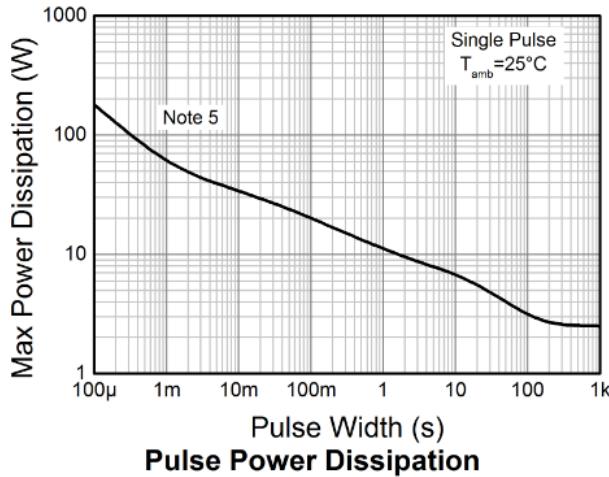
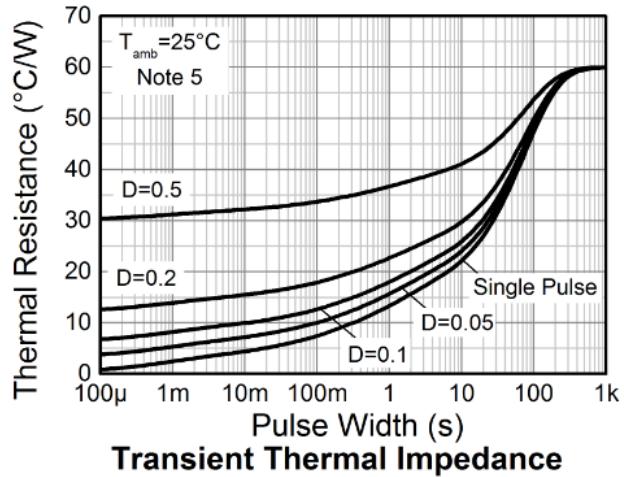
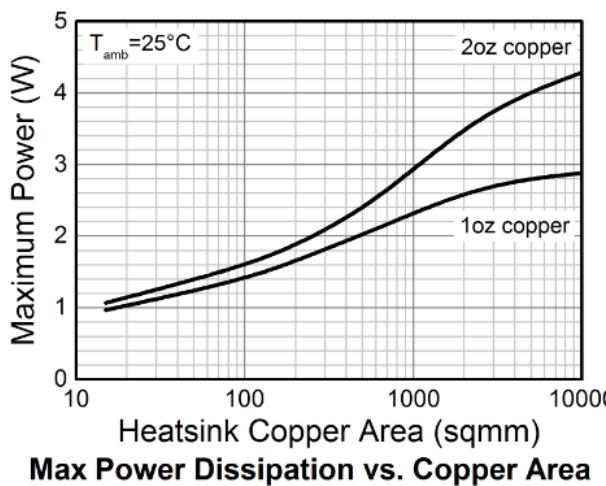
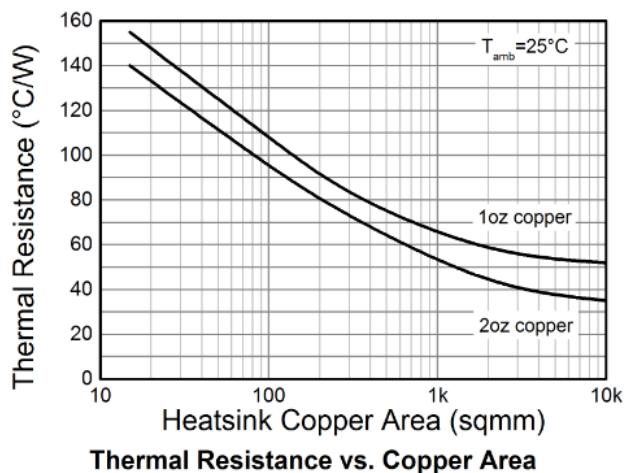
DXTN3 = Product Type Marking Code
 C60PS = Product Type Marking Code
 YYWW = Date Code Marking
 YY = Last Two Digits of Year (ex: 19 = 2019)
 WW = Week Code (01 to 53)

Absolute Maximum Ratings (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	60	V
Collector-Emitter Voltage	V_{CEO}	60	V
Emitter-Base Voltage	V_{EBO}	7	V
Base Current	I_B	500	mA
Continuous Collector Current	I_C	3	A
Peak Pulse Collector Current	I_{CM}	8	A

Thermal Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation	P_D	2.5	W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	60	°C/W
		140	
Thermal Resistance, Junction to Lead	$R_{\theta JL}$	5.7	°C/W
Operating and Storage Temperature Range	T_J, T_{STG}	-55 to +175	°C

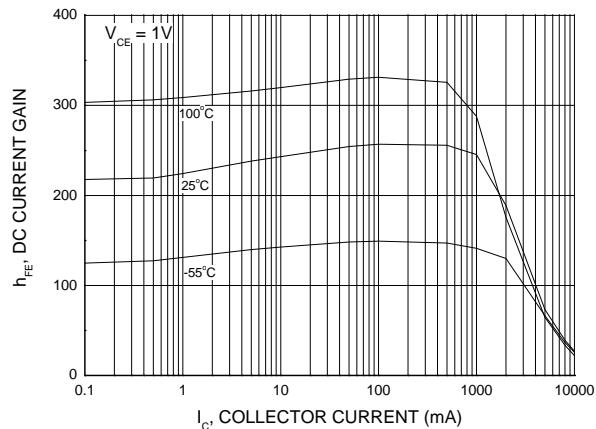





ESD Ratings (Note 8)

Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	4000	V	3A
Electrostatic Discharge - Machine Model	ESD MM	400	V	C

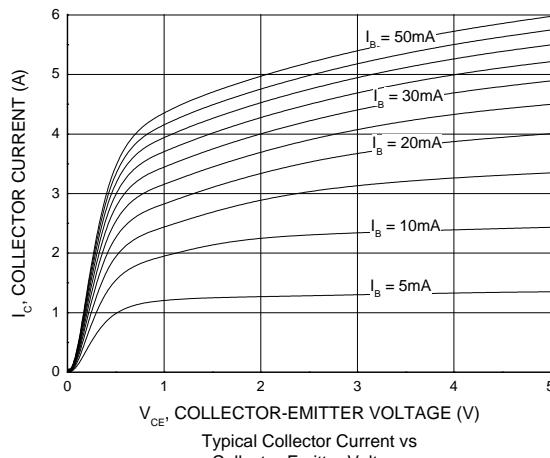
Notes:

- 5. For a device mounted with the collector lead on 25mm x 25mm 2oz copper that is on a single-sided 1.6mm FR4 PCB; device is measured under still air conditions whilst operating in a steady-state.
- 6. Same as note (5), except mounted on minimum recommended pad layout.
- 7. Thermal resistance from junction to solder point (at the collector tab).
- 8. Refer to JEDEC specification JESD22-A114 and JESD22-A115.

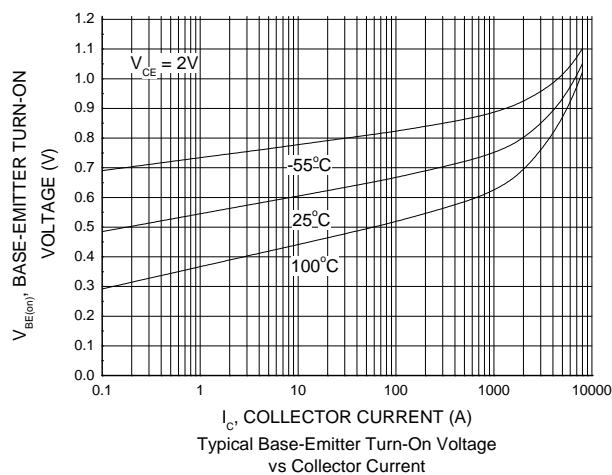
Typical Thermal Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)

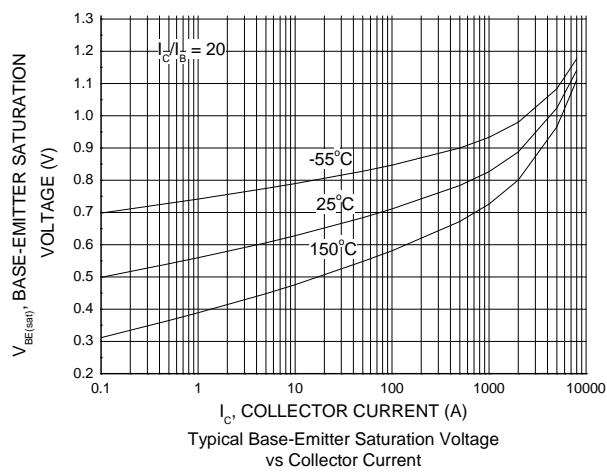


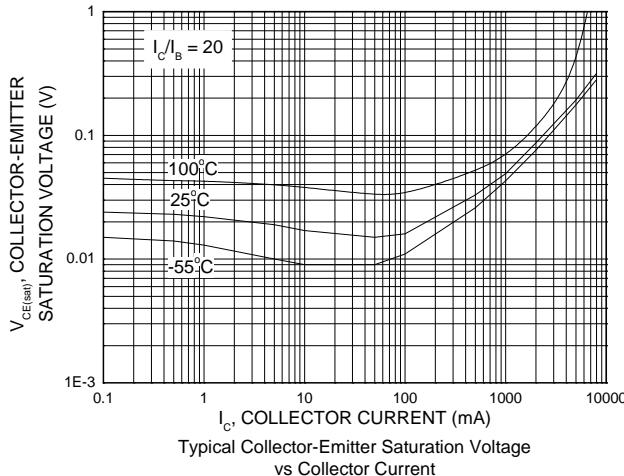
Electrical Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)

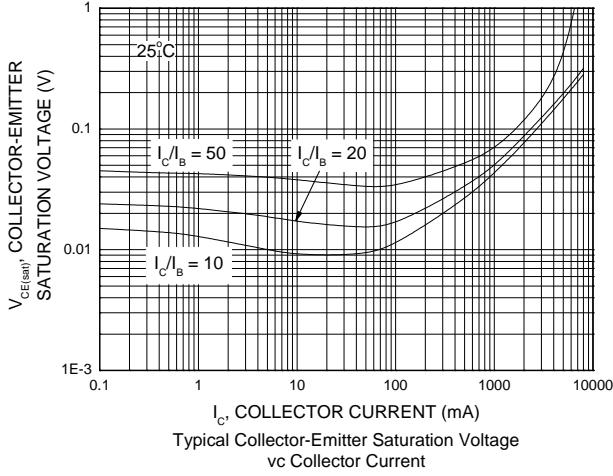

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
OFF CHARACTERISTICS						
Collector-Base Breakdown Voltage	BV_{CBO}	60	—	—	V	$I_C = 100\mu\text{A}$
Collector-Emitter Breakdown Voltage (Note 9)	BV_{CEO}	60	—	—	V	$I_C = 10\text{mA}$
Emitter-Base Breakdown Voltage	BV_{EBO}	7	—	—	V	$I_E = 100\mu\text{A}$
Collector-Base Cutoff Current	I_{CBO}	—	—	100	nA	$V_{\text{CB}} = 48\text{V}$
		—	—	50	μA	$V_{\text{CB}} = 48\text{V} @ T_J = +150^\circ\text{C}$
Emitter Cutoff Current	I_{EBO}	—	—	100	nA	$V_{\text{EB}} = 7\text{V}$
Collector-Emitter Cutoff Current	I_{CES}	—	—	100	nA	$V_{\text{CES}} = 48\text{V}$
ON CHARACTERISTICS (Note 9)						
DC Current Gain	h_{FE}	200	400	—	—	$I_C = 500\text{mA}, V_{\text{CE}} = 2\text{V}$
		200	330	—		$I_C = 1\text{A}, V_{\text{CE}} = 2\text{V}$
		100	180	—		$I_C = 2\text{A}, V_{\text{CE}} = 2\text{V}$
		50	100	—		$I_C = 3\text{A}, V_{\text{CE}} = 2\text{V}$
Collector-Emitter Saturation Voltage	$V_{\text{CE}(\text{sat})}$	—	70	120	mV	$I_C = 1\text{A}, I_B = 50\text{mA}$
Collector-Emitter Saturation Resistance	$R_{\text{CE}(\text{sat})}$	—	60	90	$\text{m}\Omega$	$I_C = 3\text{A}, I_B = 300\text{mA}$
Base-Emitter Saturation Voltage	$V_{\text{BE}(\text{sat})}$	—	0.86	1.0	V	$I_C = 1\text{A}, I_B = 100\text{mA}$
		—	1.0	1.2		$I_C = 2\text{A}, I_B = 200\text{mA}$
Base-Emitter Turn-On Voltage	$V_{\text{BE}(\text{on})}$	—	0.65	0.85	V	$I_C = 0.1\text{A}, V_{\text{CE}} = 2\text{V}$
SMALL SIGNAL CHARACTERISTICS						
Current Gain-Bandwidth Product	f_T	—	140	—	MHz	$V_{\text{CE}} = 10\text{V}, I_C = 100\text{mA}, f = 10\text{MHz}$
Output Capacitance	C_{obo}	—	17	—	pF	$V_{\text{CB}} = 10\text{V}, f = 1\text{MHz}$
Delay Time	t_d	—	15	—	ns	$V_{\text{CC}} = 12.5\text{V}, I_C = 1\text{A}$ $I_{B1} = -I_{B2} = 0.05\text{A}$
Rise Time	t_r	—	120	—	ns	
Turn-On Time	$t_{(\text{on})}$	—	135	—	ns	
Storage Time	t_s	—	800	—	ns	
Fall Time	t_f	—	300	—	ns	
Turn-Off Time	$t_{(\text{off})}$	—	1100	—	ns	

Note: 9. Measured under pulsed conditions. Pulse width $\leq 300\mu\text{s}$. Duty cycle $\leq 2\%$.


Typical Electrical Characteristics (@ $T_A = +25^\circ\text{C}$, unless otherwise specified.)

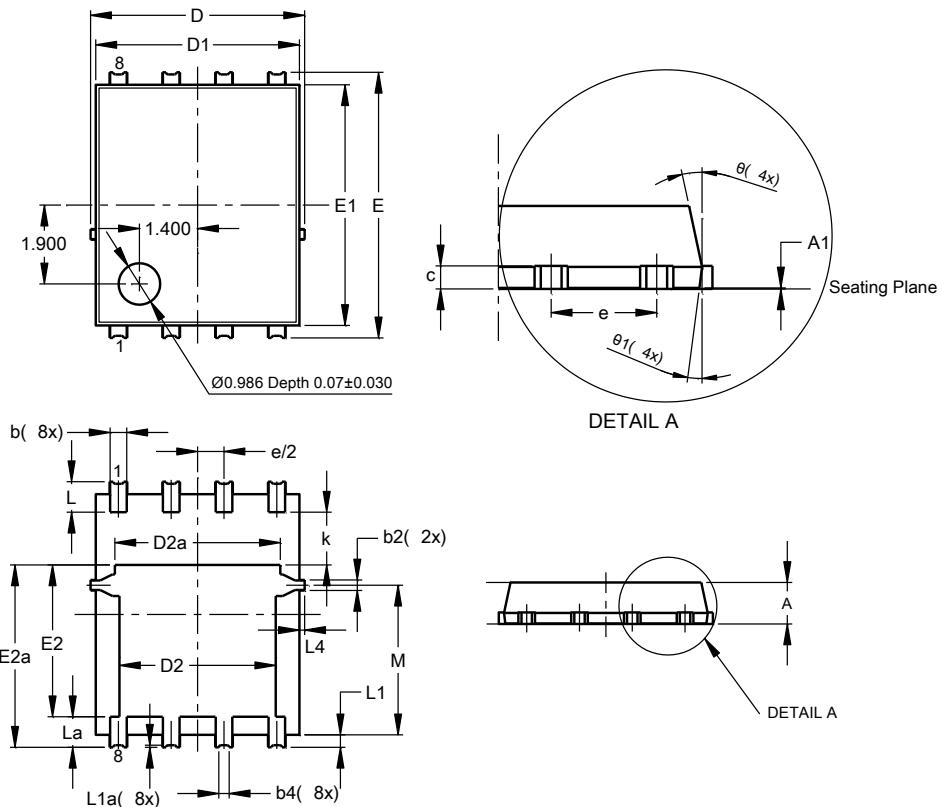

Typical DC Current Gain vs Collector Current


Typical Collector Current vs Collector-Emitter Voltage


Typical Base-Emitter Turn-On Voltage vs Collector Current

Typical Base-Emitter Saturation Voltage vs Collector Current

Typical Collector-Emitter Saturation Voltage vs Collector Current

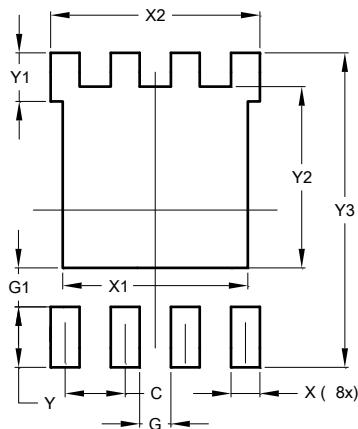


Typical Collector-Emitter Saturation Voltage vs Collector Current

Package Outline Dimensions

Please see <http://www.diodes.com/package-outlines.html> for the latest version.

PowerDI5060-8 (SWP) (Type Q)



PowerDI5060-8 (SWP) (Type Q)			
Dim	Min	Max	Typ
A	0.90	1.10	1.00
A1	0	0.05	--
b	0.30	0.50	0.41
b2	0.20	0.35	0.25
b4	0.25REF		
c	0.230	0.330	0.277
D	5.15 BSC		
D1	4.70	5.10	4.90
D2	3.56	3.96	3.76
D2a	3.78	4.18	3.98
E	6.40 BSC		
E1	5.60	6.00	5.80
E2	3.46	3.86	3.66
E2a	4.195	4.595	4.395
e	1.27BSC		
k	1.05	--	--
L	0.635	0.835	0.735
La	0.635	0.835	0.735
L1	0.200	0.400	0.300
L1a	0.050REF		
L4	0.025	0.225	0.125
M	3.205	4.005	3.605
θ	10°	12°	11°
θ1	6°	8°	7°
All Dimensions in mm			

Suggested Pad Layout

Please see <http://www.diodes.com/package-outlines.html> for the latest version.

PowerDI5060-8 (SWP) (Type Q)

Dimensions	Value (in mm)
C	1.270
G	0.660
G1	0.820
X	0.610
X1	4.100
X2	4.420
Y	1.270
Y1	1.020
Y2	3.810
Y3	6.610

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com