


High Voltage, High Gain **BIMOSFET™** Monolithic **Bipolar MOS Transistor**

IXBA16N170AHV IXBT16N170AHV

 $V_{CE(sat)} \le$ 6.0V

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _c = 25°C to 150°C	1700	V	
V _{CGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	1700	V	
V _{GES}	Continuous	± 20	V	
V _{GEM}	Transient	± 30	V	
I _{C25} I _{C90} I _{CM}	$T_{c} = 25^{\circ}C$ $T_{c} = 90^{\circ}C$ $T_{c} = 25^{\circ}C, 1ms$	16 10 40	A A A	
SSOA (RBSOA)	$V_{GE} = 15V$, $T_{VJ} = 125^{\circ}C$, $R_{G} = 33\Omega$ Clamped Inductive Load	I _{CM} = 40 1350	A V	
t _{sc} (SCSOA)	$V_{GE} = 15V$, $V_{CE} = 1200V$, $T_{J} = 125^{\circ}C$ $R_{G} = 33\Omega$, Non Repetitive	10	μs	
P _c	T _c = 25°C	150	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Solderin Plastic Body for 10s	g 300 260	°C ℃	
F _c	Mounting Force (TO-263)	1065 / 2214.6	N/lb	
Weight	TO-263 TO-268	2.5 4.0	g g	

•	Test Conditions Unless Otherwise Specified)	Chara Min.	Typ.	Values Max.
Weight	TO-263 TO-268		2.5 4.0	g g
F _c	Mounting Force (TO-263)	1065 / 22	214.6	N/lb
T _L T _{SOLD}	Maximum Lead Temperature for Solderin Plastic Body for 10s	ng	300 260	°C °C
T _{stg}		-55 .	+150	°C
\mathbf{T}_{JM}			150	°C
T _J		-55 .	+150	°C
P _c	$T_{c} = 25^{\circ}C$		150	W
t _{sc} (SCSOA)	V_{GE} = 15V, V_{CE} = 1200V, T_{J} = 125°C R_{G} = 33 Ω , Non Repetitive		10	μs
SSOA (RBSOA)	$V_{GE} = 15V$, $T_{VJ} = 125^{\circ}C$, $R_{G} = 33\Omega$ Clamped Inductive Load	I _{CI}	_м = 40 1350	A V
C ₉₀	$T_{c} = 90^{\circ}\text{C}$ $T_{c} = 25^{\circ}\text{C}, 1\text{ms}$		10 40	A

Symbol Test Conditions (T _J = 25°C Unless Otherwise Specified)		Characteristic Values Min. Typ. Max.			
BV _{CES}	$I_{c} = 250 \mu A, V_{GE} = 0 V$	1700			V
V _{GE(th)}	$I_{\rm C}=250\mu A,\ V_{\rm CE}=V_{\rm GE}$	2.5		5.5	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}, V_{GE} = 0V$	T _J = 125°C		50 1.5	μA mA
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{\rm C} = 10A, V_{\rm GE} = 15V, \text{ Note 1}$			6.0	V
		$T_J = 125^{\circ}C$	5.0		V

TO-268HV (IXBT)

C = Collector G = Gate E = Emitter Tab = Collector

Features

- High Voltage Package
- High Blocking Voltage
- Anti-Parallel Diode
- Low Conduction Losses

Advantages

- Low Gate Drive Requirement
- High Power Density

Applications:

- Switch-Mode and Resonant-Mode **Power Supplies**
- Uninterruptible Power Supplies (UPS)
- Laser Generators
- Capacitor Discharge Circuits
- AC Switches

IXBA16N170AHV IXBT16N170AHV

Symbol	Tes	t Conditions	Characteristic Values			
$(T_J = 25^\circ)$	C U	nless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}		$I_{\rm C} = 10$ A, $V_{\rm CE} = 10$ V, Note 1	8.0	12.5		S
C _{ies})			1400		рF
C _{oes}	}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		90		рF
C _{res}	J			31		pF
Q _{g(on)})			65		nC
\mathbf{Q}_{qe}	}	$I_{\rm C} = 10$ A, $V_{\rm GE} = 15$ V, $V_{\rm CE} = 0.5 \bullet V_{\rm CES}$		13		nC
Q _{gc}	J			22		nC
t _{d(on)})	Inductive load, T ₁ = 25°C		15		ns
t _{ri}		$I_{\rm C} = 10A, V_{\rm GF} = 15V$		25		ns
$\mathbf{t}_{d(off)}$	}	$V_{CF} = 0.8 \cdot V_{CFS}, R_{G} = 10\Omega$		160	250	ns
t _{fi}		Note 2		50	100	ns
E _{off}	J	NOIG Z		1.2	2.5	mJ
t _{d(on)})			15		ns
t _{ri}		Inductive load, T _J = 125°C		28		ns
E_{on}		$I_{\rm C} = 10A, V_{\rm GE} = 15V$		2.0		mJ
$\mathbf{t}_{d(off)}$		$V_{CE} = 0.8 \cdot V_{CES}, R_{G} = 10\Omega$		220		ns
t _{fi}		Note 2		150		ns
E _{off}	<u> </u>			2.6		mJ
R_{thJC}					0.83	°C/W

TO-263HV Outline PIN: 1 - Gate 2 - Emitter 3 - Collector

SYM	INCHES		MILLIMETER		
SIM	MIN	MAX	MIN	MAX	
Α	.170	.185	4.30	4.70	
A1	.000	.008	0.00	0.20	
A2	.091	.098	2.30	2.50	
Ь	.028	.035	0.70	0.90	
b2	.046	.054	1.18	1.38	
С	.018	.024	0.45	0.60	
C2	.049	.055	1.25	1.40	
D	.354	.370	9.00	9.40	
D1	.311	.327	7.90	8.30	
E	.386	.402	9.80	10.20	
E1	.307	.323	7.80	8.20	
e1	.200	.200 BSC		5.08 BSC	
(e2)	.163	.174	4.13	4.43	
Н	.591	.614	15.00	15.60	
L	.079	.102	2.00	2.60	
L1	.039	.055	1.00	1.40	
L3	.010 BSC		0.254 BSC		
(L4)	.071	.087	1.80	2.20	

Reverse Diode

Symbol Test ConditionsChara $(T_J = 25^{\circ}\text{C Unless Otherwise Specified})$ Min.		acteristic \ Typ.	cteristic Values Typ.		
V _F	$I_F = 10A$, $V_{GE} = 0V$		5.0	V	
t _{rr}	$I_F = 10A, V_{GE} = 0V, -di_F/dt = 50A/\mu s$	360		ns	
I _{RM}	$\int V_{R} = 100V, V_{GE} = 0V$	10		Α	

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CE} (clamp), T_J or R_g .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-268HV Outline | Compared Memory Form | Co

INCHES		MILLIMETER		
MIN	MAX	MIN	MAX	
.193	.201	4.90	5.10	
.106	.114	2.70	2.90	
.001	.010	0.02	0.25	
.045	.057	1.15	1.45	
.016	.026	0.40	0.65	
.057	.063	1.45	1.60	
.543	.551	13.80	14.00	
.465	.476	11.80	12.10	
.295	.307	7.50	7.80	
.114	.126	2.90	3.20	
.624	.632	15.85	16.05	
.524	.535	13.30	13.60	
.215	BSC	5.45 BSC		
.736	.752	18.70	19.10	
.067	.079	1.70	2.00	
.039	.045	1.00	1.15	
.010	BSC	0.25 BSC		
.150	.161	3.80	4.10	
	MIN .193 .106 .001 .045 .016 .057 .543 .465 .295 .114 .624 .215 .736 .067 .039 .010	MIN MAX .193 .201 .106 .114 .001 .010 .045 .057 .016 .026 .057 .063 .543 .551 .465 .476 .295 .307 .114 .126 .624 .632 .524 .535 .215 BSC .736 .752 .067 .079 .039 .045	MIN MAX MIN .193 .201 4.90 .106 .114 2.70 .001 .010 0.02 .045 .057 1.15 .016 .026 0.40 .057 .063 1.45 .543 .551 13.80 .465 .476 11.80 .295 .307 7.50 .114 .126 2.90 .624 .632 15.85 .524 .535 13.30 .215 BSC 5.45 .736 .752 18.70 .067 .079 1.70 .039 .045 1.00 .010 BSC 0.25	

IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.