
**POWER MOSFET  
THRU-HOLE (MO-036AB)**

**IRFG5110**  
**100V, Combination 2N-2P-CHANNEL**  
**HEXFET® MOSFETTECHNOLOGY**

**Product Summary**

| Part Number | R <sub>DS(on)</sub> | I <sub>D</sub> | CHANNEL |
|-------------|---------------------|----------------|---------|
| IRFG5110    | 0.7Ω                | 1.0A           | N       |
| IRFG5110    | 0.7Ω                | -1.0A          | P       |

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.



**Features:**

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Dynamic dv/dt Rating
- Light-weight

**Absolute Maximum Ratings (Per Die)**

|                                                                 | Parameter                     | N-Channel                               | P-Channel | Units |
|-----------------------------------------------------------------|-------------------------------|-----------------------------------------|-----------|-------|
| I <sub>D</sub> @ V <sub>GS</sub> =± 10V, T <sub>C</sub> = 25°C  | Continuous Drain Current      | 1.0                                     | -1.0      | A     |
| I <sub>D</sub> @ V <sub>GS</sub> =± 10V, T <sub>C</sub> = 100°C | Continuous Drain Current      | 0.6                                     | -0.6      |       |
| I <sub>DM</sub>                                                 | Pulsed Drain Current ①        | 4.0                                     | -4.0      |       |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C                          | Max. Power Dissipation        | 1.4                                     | 1.4       | W     |
|                                                                 | Linear Derating Factor        | 0.011                                   | 0.011     | W/°C  |
| V <sub>GS</sub>                                                 | Gate-to-Source Voltage        | ±20                                     | ±20       | V     |
| E <sub>AS</sub>                                                 | Single Pulse Avalanche Energy | 75 ②                                    | 75 ⑤      | mJ    |
| I <sub>AR</sub>                                                 | Avalanche Current ①           | —                                       | —         | A     |
| E <sub>AR</sub>                                                 | Repetitive Avalanche Energy ① | —                                       | —         | mJ    |
| dv/dt                                                           | Peak Diode Recovery dv/dt     | 5.5 ③                                   | -5.5 ⑥    | V/ns  |
| T <sub>J</sub>                                                  | Operating Junction            | -55 to 150                              |           | °C    |
| T <sub>STG</sub>                                                | Storage Temperature Range     |                                         |           |       |
|                                                                 | Lead Temperature              | 300 (0.63 in./1.6 mm from case for 10s) |           |       |
|                                                                 | Weight                        | 1.3 (Typical)                           |           | g     |

For footnotes refer to the last page

[www.irf.com](http://www.irf.com)

1

04/16/02

IRFG5110

**Electrical Characteristics For Each N-Channel Device @  $T_J = 25^\circ\text{C}$  (Unless Otherwise Specified)**

|                           | Parameter                                    | Min  | Typ  | Max  | Units               | Test Conditions                                                                               |
|---------------------------|----------------------------------------------|------|------|------|---------------------|-----------------------------------------------------------------------------------------------|
| BVDSS                     | Drain-to-Source Breakdown Voltage            | 100  | —    | —    | V                   | $V_{GS} = 0\text{V}$ , $I_D = 1.0\text{mA}$                                                   |
| $\Delta BVDSS/\Delta T_J$ | Temperature Coefficient of Breakdown Voltage | —    | 0.13 | —    | V/ $^\circ\text{C}$ | Reference to $25^\circ\text{C}$ , $I_D = 1.0\text{mA}$                                        |
| RDS(on)                   | Static Drain-to-Source On-State Resistance   | —    | —    | 0.7  | $\Omega$            | $V_{GS} = 10\text{V}$ , $I_D = 0.6\text{A}$ ④                                                 |
|                           |                                              | —    | —    | 0.8  |                     | $V_{GS} = 10\text{V}$ , $I_D = 1.0\text{A}$                                                   |
| $V_{GS(\text{th})}$       | Gate Threshold Voltage                       | 2.0  | —    | 4.0  | V                   | $V_{DS} = V_{GS}$ , $I_D = 250\mu\text{A}$                                                    |
| $g_{fs}$                  | Forward Transconductance                     | 0.86 | —    | —    | S (G)               | $V_{DS} > 15\text{V}$ , $I_D = 0.6\text{A}$ ④                                                 |
| $I_{DSS}$                 | Zero Gate Voltage Drain Current              | —    | —    | 25   | $\mu\text{A}$       | $V_{DS} = 80\text{V}$ , $V_{GS} = 0\text{V}$                                                  |
|                           |                                              | —    | —    | 250  |                     | $V_{DS} = 80\text{V}$ ,<br>$V_{GS} = 0\text{V}$ , $T_J = 125^\circ\text{C}$                   |
| $I_{GSS}$                 | Gate-to-Source Leakage Forward               | —    | —    | 100  | nA                  | $V_{GS} = 20\text{V}$                                                                         |
| $I_{GSS}$                 | Gate-to-Source Leakage Reverse               | —    | —    | -100 |                     | $V_{GS} = -20\text{V}$                                                                        |
| $Q_g$                     | Total Gate Charge                            | —    | —    | 15   | nC                  | $V_{GS} = 10\text{V}$ , $I_D = 1.0\text{A}$ ,                                                 |
| $Q_{gs}$                  | Gate-to-Source Charge                        | —    | —    | 7.5  |                     | $V_{DS} = 50\text{V}$                                                                         |
| $Q_{gd}$                  | Gate-to-Drain ('Miller') Charge              | —    | —    | 7.5  |                     |                                                                                               |
| $t_{d(on)}$               | Turn-On Delay Time                           | —    | —    | 20   | ns                  | $V_{DD} = 50\text{V}$ , $I_D = 1.0\text{A}$ ,<br>$V_{GS} = 10\text{V}$ , $R_G = 24\Omega$     |
| $t_r$                     | Rise Time                                    | —    | —    | 25   |                     |                                                                                               |
| $t_{d(off)}$              | Turn-Off Delay Time                          | —    | —    | 40   |                     |                                                                                               |
| $t_f$                     | Fall Time                                    | —    | —    | 40   |                     |                                                                                               |
| $L_S + L_D$               | Total Inductance                             | —    | 10   | —    | nH                  | Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package) |
| $C_{iss}$                 | Input Capacitance                            | —    | 180  | —    | pF                  | $V_{GS} = 0\text{V}$ , $V_{DS} = 25\text{V}$<br>$f = 1.0\text{MHz}$                           |
| $C_{oss}$                 | Output Capacitance                           | —    | 82   | —    |                     |                                                                                               |
| $C_{rss}$                 | Reverse Transfer Capacitance                 | —    | 15   | —    |                     |                                                                                               |

**Source-Drain Diode Ratings and Characteristics (Per Die)**

|          | Parameter                              | Min                                                                                              | Typ | Max  | Units | Test Conditions                                                                       |
|----------|----------------------------------------|--------------------------------------------------------------------------------------------------|-----|------|-------|---------------------------------------------------------------------------------------|
| $I_S$    | Continuous Source Current (Body Diode) | —                                                                                                | —   | 1.0  | A     | $T_J = 25^\circ\text{C}$ , $I_S = 1.0\text{A}$ , $V_{GS} = 0\text{V}$ ④               |
| $I_{SM}$ | Pulse Source Current (Body Diode) ①    | —                                                                                                | —   | 4.0  |       |                                                                                       |
| $V_{SD}$ | Diode Forward Voltage                  | —                                                                                                | —   | 1.5  | V     |                                                                                       |
| $t_{rr}$ | Reverse Recovery Time                  | —                                                                                                | —   | 200  | nS    | $T_J = 25^\circ\text{C}$ , $I_F = 1.0\text{A}$ , $dI/dt \leq 100\text{A}/\mu\text{s}$ |
| $Q_{RR}$ | Reverse Recovery Charge                | —                                                                                                | —   | 0.83 | nC    | $V_{DD} \leq 50\text{V}$ ④                                                            |
| $t_{on}$ | Forward Turn-On Time                   | Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$ . |     |      |       |                                                                                       |

**Thermal Resistance (Per Die)**

|            | Parameter           | Min | Typ | Max | Units | Test Conditions      |
|------------|---------------------|-----|-----|-----|-------|----------------------|
| $R_{thJC}$ | Junction-to-Case    | —   | —   | 17  | °C/W  | Typical socket mount |
| $R_{thJA}$ | Junction-to-Ambient | —   | —   | 90  |       |                      |

Note: Corresponding Spice and Saber models are available on the G&amp;S Website.

For footnotes refer to the last page

International

ICR Rectifier

IRFG5110

**Electrical Characteristics For Each P-Channel Device @  $T_j = 25^\circ\text{C}$  (Unless Otherwise Specified)**

|                           | Parameter                                    | Min  | Typ   | Max  | Units               | Test Conditions                                                                               |
|---------------------------|----------------------------------------------|------|-------|------|---------------------|-----------------------------------------------------------------------------------------------|
| BVDSS                     | Drain-to-Source Breakdown Voltage            | -100 | —     | —    | V                   | $V_{GS} = 0V, I_D = -1.0\text{mA}$                                                            |
| $\Delta BVDSS/\Delta T_j$ | Temperature Coefficient of Breakdown Voltage | —    | -0.22 | —    | V/ $^\circ\text{C}$ | Reference to $25^\circ\text{C}$ , $I_D = -1.0\text{mA}$                                       |
| RDS(on)                   | Static Drain-to-Source On-State Resistance   | —    | —     | 0.7  | $\Omega$            | $V_{GS} = -10V, I_D = -0.6\text{A}$ ④                                                         |
|                           |                                              | —    | —     | 0.8  |                     | $V_{GS} = -10V, I_D = -1.0\text{A}$                                                           |
| VGS(th)                   | Gate Threshold Voltage                       | -2.0 | —     | -4.0 | V                   | $V_{DS} = V_{GS}, I_D = -250\mu\text{A}$                                                      |
| gfs                       | Forward Transconductance                     | 1.1  | —     | —    | S ( $\text{V}$ )    | $V_{DS} > -15V, I_{DS} = -0.6\text{A}$ ④                                                      |
| IDSS                      | Zero Gate Voltage Drain Current              | —    | —     | -25  | $\mu\text{A}$       | $V_{DS} = -80V, V_{GS} = 0V$                                                                  |
|                           |                                              | —    | —     | -250 |                     | $V_{DS} = -80V, V_{GS} = 0V, T_j = 125^\circ\text{C}$                                         |
| IGSS                      | Gate-to-Source Leakage Forward               | —    | —     | -100 | nA                  | $V_{GS} = -20V$                                                                               |
| IGSS                      | Gate-to-Source Leakage Reverse               | —    | —     | 100  |                     | $V_{GS} = 20V$                                                                                |
| Qg                        | Total Gate Charge                            | —    | —     | 22   | nC                  | $V_{GS} = -10V, I_D = -1.0\text{A}, V_{DS} = -50V$                                            |
| Qgs                       | Gate-to-Source Charge                        | —    | —     | 8.0  |                     |                                                                                               |
| Qgd                       | Gate-to-Drain ('Miller') Charge              | —    | —     | 14   |                     |                                                                                               |
| td(on)                    | Turn-On Delay Time                           | —    | —     | 30   | ns                  | $V_{DD} = -50V, I_D = -1.0\text{A}, V_{GS} = -10V, R_G = 24\Omega$                            |
| tr                        | Rise Time                                    | —    | —     | 60   |                     |                                                                                               |
| td(off)                   | Turn-Off Delay Time                          | —    | —     | 60   |                     |                                                                                               |
| tf                        | Fall Time                                    | —    | —     | 60   |                     |                                                                                               |
| LS + LD                   | Total Inductance                             | —    | 10    | —    | nH                  | Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package) |
| Ciss                      | Input Capacitance                            | —    | 390   | —    | pF                  | $V_{GS} = 0V, V_{DS} = -25V, f = 1.0\text{MHz}$                                               |
| Coss                      | Output Capacitance                           | —    | 170   | —    |                     |                                                                                               |
| Crss                      | Reverse Transfer Capacitance                 | —    | 45    | —    |                     |                                                                                               |

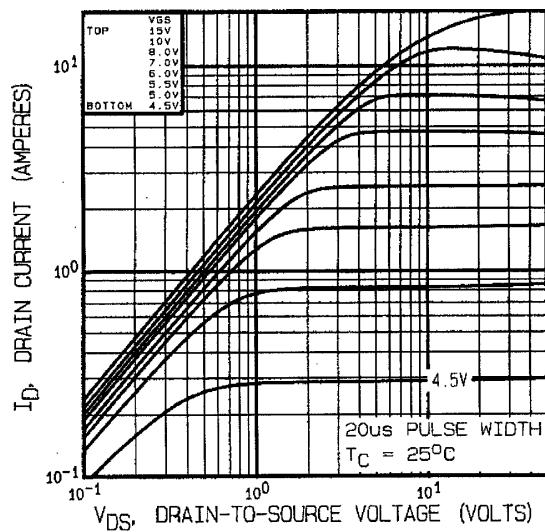
**Source-Drain Diode Ratings and Characteristics (Per Die)**

|     | Parameter                              | Min                                                                                         | Typ | Max  | Units | Test Conditions                                                                   |
|-----|----------------------------------------|---------------------------------------------------------------------------------------------|-----|------|-------|-----------------------------------------------------------------------------------|
| IS  | Continuous Source Current (Body Diode) | —                                                                                           | —   | -1.0 | A     |                                                                                   |
| ISM | Pulse Source Current (Body Diode) ①    | —                                                                                           | —   | -4.0 |       |                                                                                   |
| VSD | Diode Forward Voltage                  | —                                                                                           | —   | -5.5 | V     | $T_j = 25^\circ\text{C}, I_S = -1.0\text{A}, V_{GS} = 0V$ ④                       |
| trr | Reverse Recovery Time                  | —                                                                                           | —   | 200  | nS    | $T_j = 25^\circ\text{C}, I_F = -1.0\text{A}, dI/dt \leq -100\text{A}/\mu\text{s}$ |
| QRR | Reverse Recovery Charge                | —                                                                                           | —   | 0.66 | nC    | $V_{DD} \leq -50V$                                                                |
| ton | Forward Turn-On Time                   | Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. |     |      |       |                                                                                   |

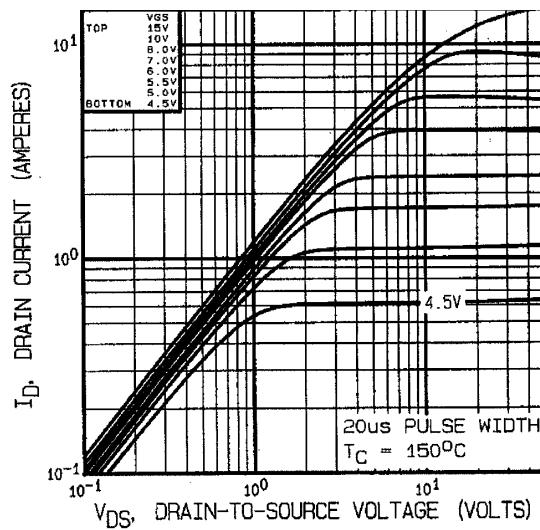
**Thermal Resistance (Per Die)**

|       | Parameter           | Min | Typ | Max | Units                     | Test Conditions      |
|-------|---------------------|-----|-----|-----|---------------------------|----------------------|
| RthJC | Junction-to-Case    | —   | —   | 17  | $^\circ\text{C}/\text{W}$ | Typical socket mount |
| RthJA | Junction-to-Ambient | —   | —   | 90  |                           |                      |

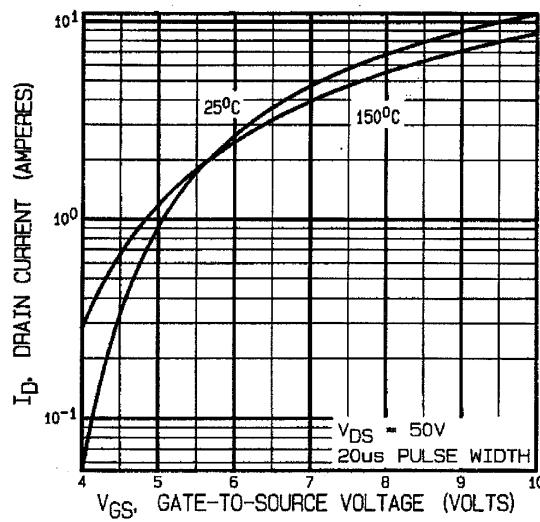
For footnotes refer to the last page


www.irf.com

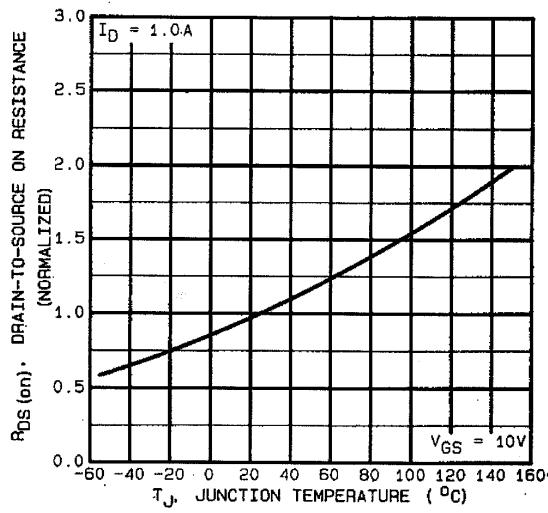
3


**IRFG5110**

**N-Channel  
Q1,Q3**


International  
**IR** Rectifier




**Fig 1.** Typical Output Characteristics



**Fig 2.** Typical Output Characteristics



**Fig 3.** Typical Transfer Characteristics



**Fig 4.** Normalized On-Resistance  
Vs. Temperature

N-Channel  
 Q1,Q3

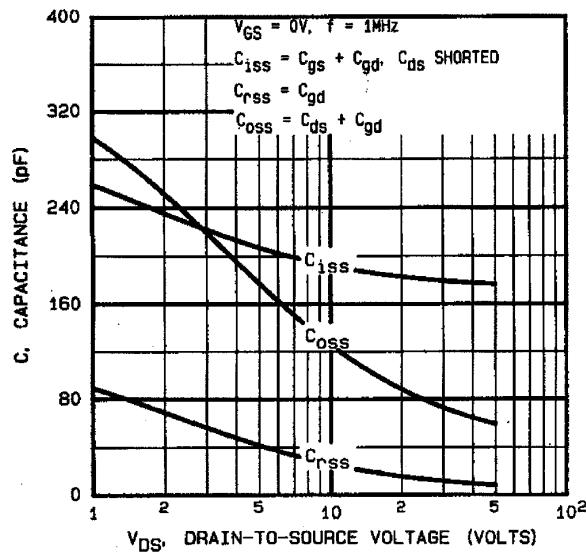



Fig 5. Typical Capacitance Vs.  
 Drain-to-Source Voltage

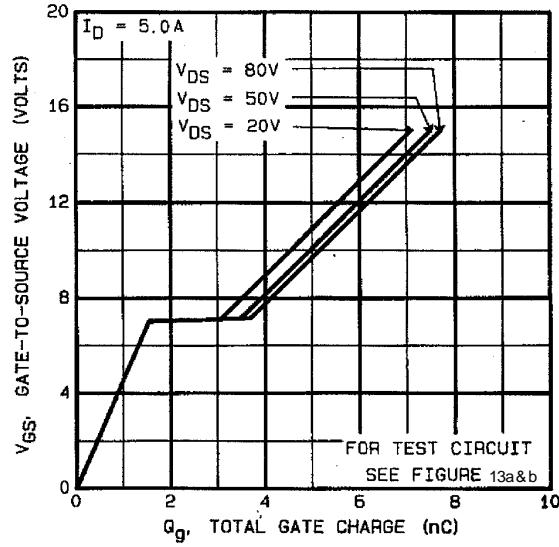



Fig 6. Typical Gate Charge Vs.  
 Gate-to-Source Voltage

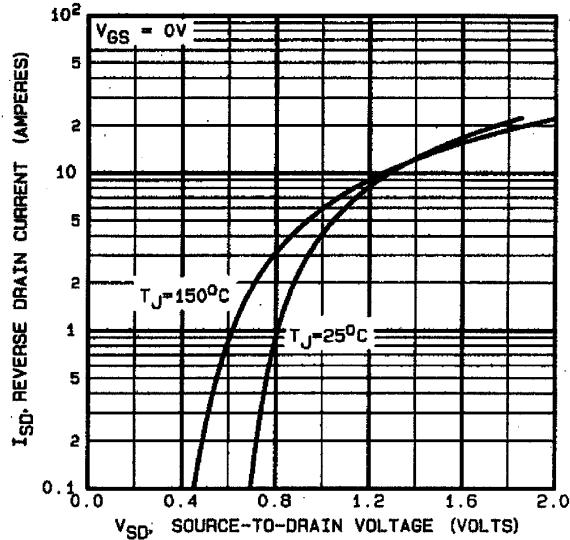



Fig 7. Typical Source-Drain Diode  
 Forward Voltage

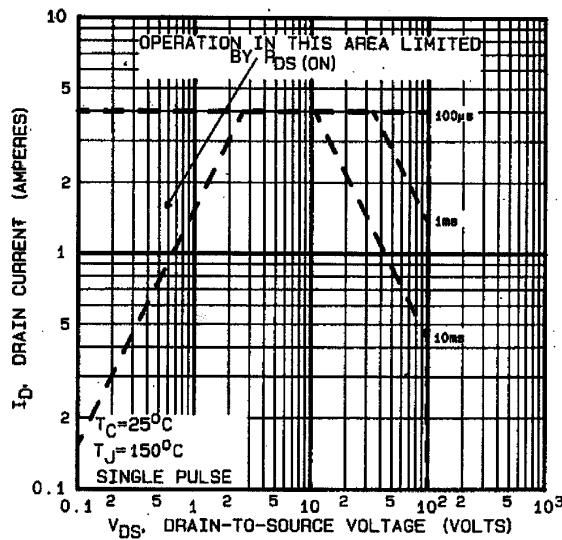
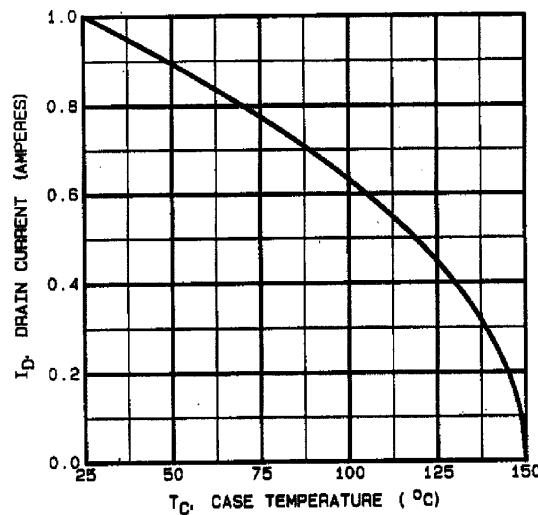
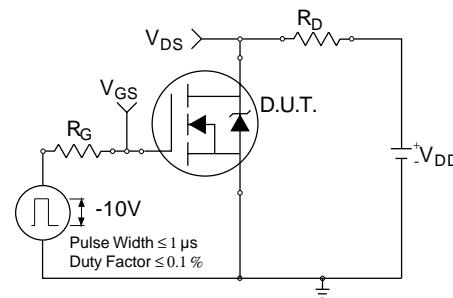
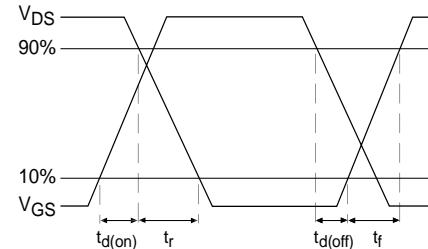



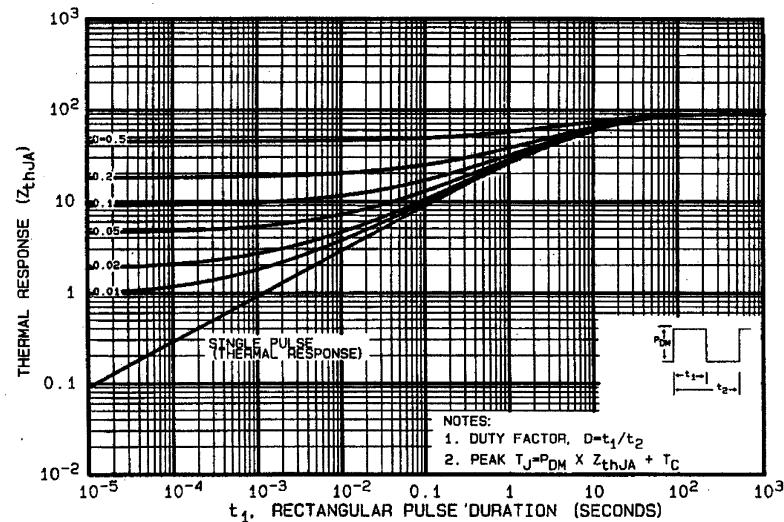

Fig 8. Maximum Safe Operating Area


IRFG5110

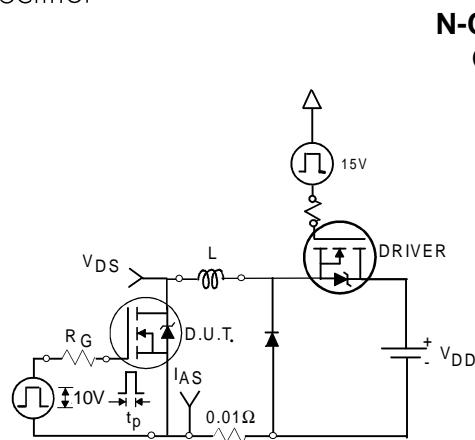
N-Channel  
Q1,Q3


International  
**IR** Rectifier

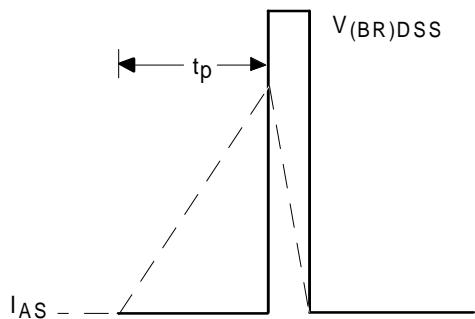



**Fig 9.** Maximum Drain Current Vs.  
Case Temperature

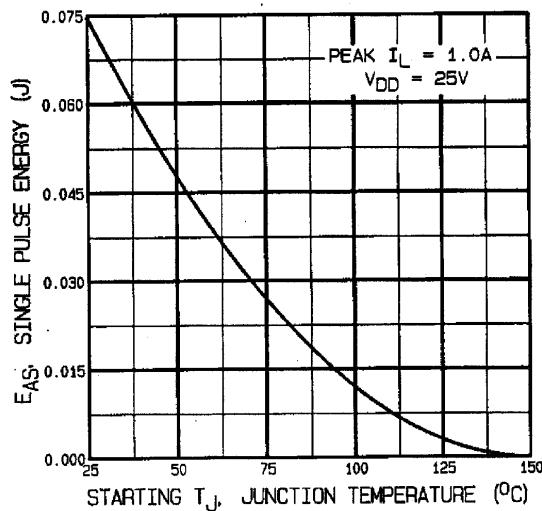



**Fig 10a.** Switching Time Test Circuit

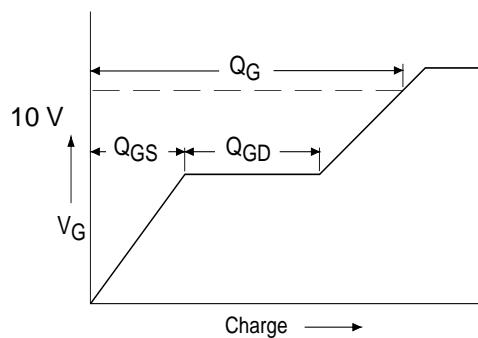



**Fig 10b.** Switching Time Waveforms

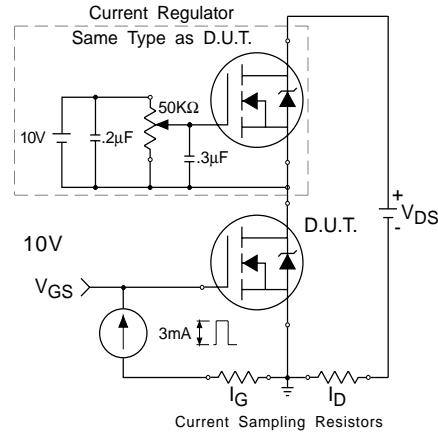



**Fig 11.** Maximum Effective Transient Thermal Impedance, Junction-to-Ambient




**Fig 12a.** Unclamped Inductive Test Circuit




**Fig 12b.** Unclamped Inductive Waveforms



**Fig 12c.** Maximum Avalanche Energy  
Vs. Drain Current



**Fig 13a.** Basic Gate Charge Waveform



**Fig 13b.** Gate Charge Test Circuit

IRFG5110

International  
**IR** Rectifier

P-Channel  
Q2,Q4

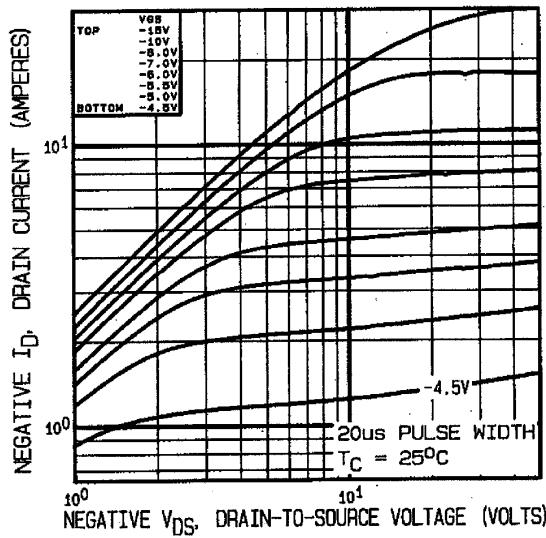



Fig 14. Typical Output Characteristics

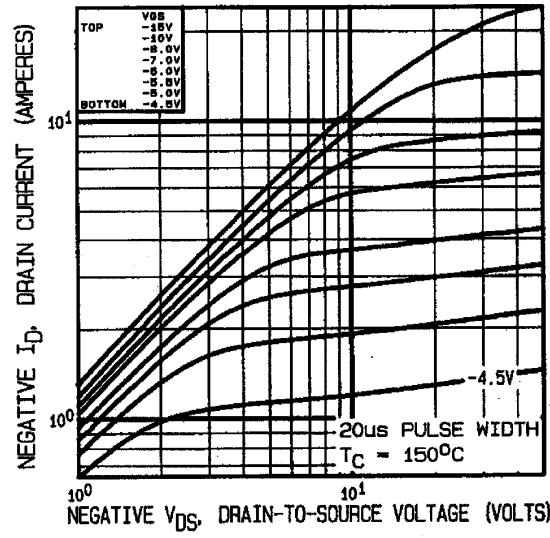



Fig 15. Typical Output Characteristics

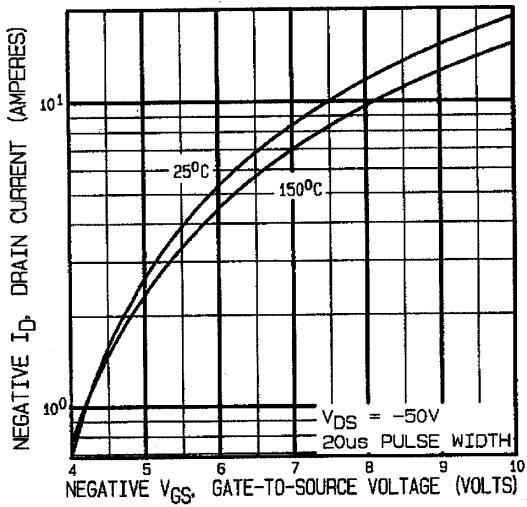



Fig 16. Typical Transfer Characteristics

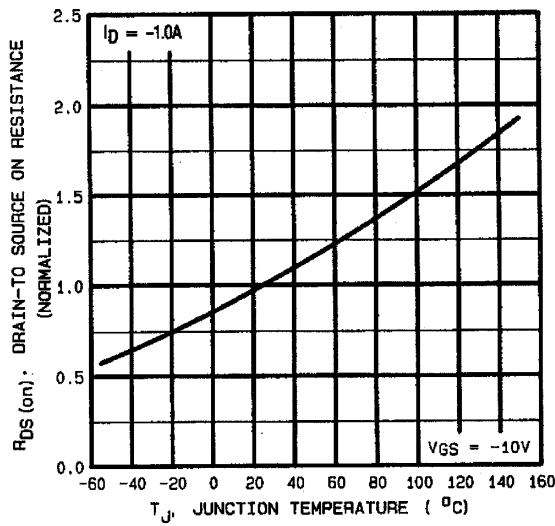
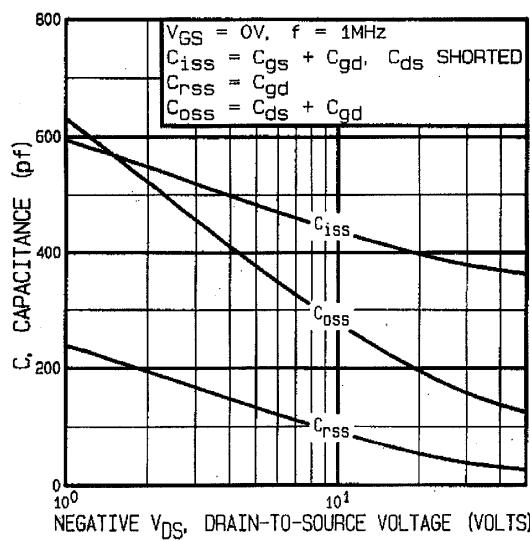
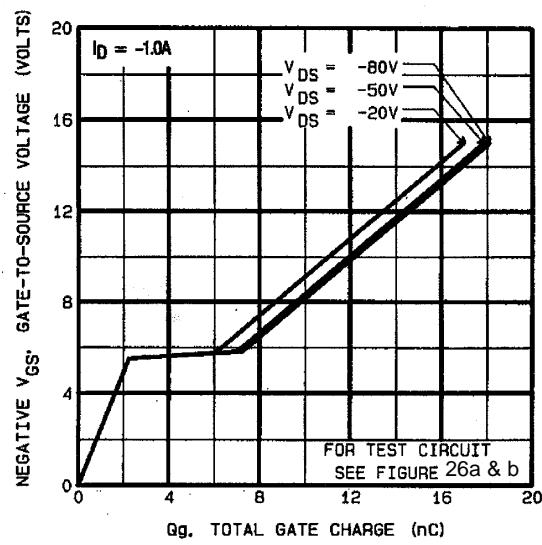
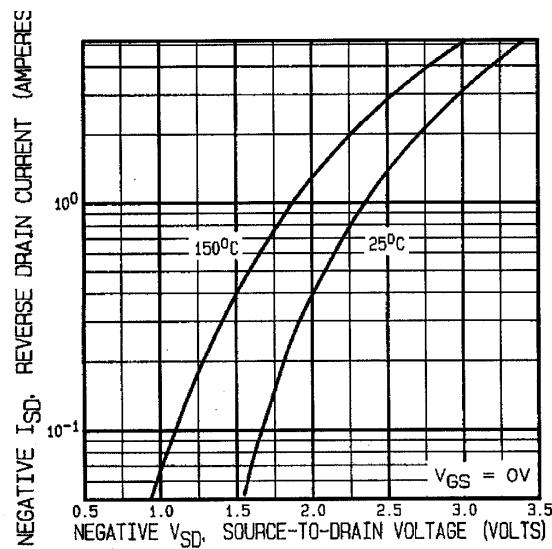
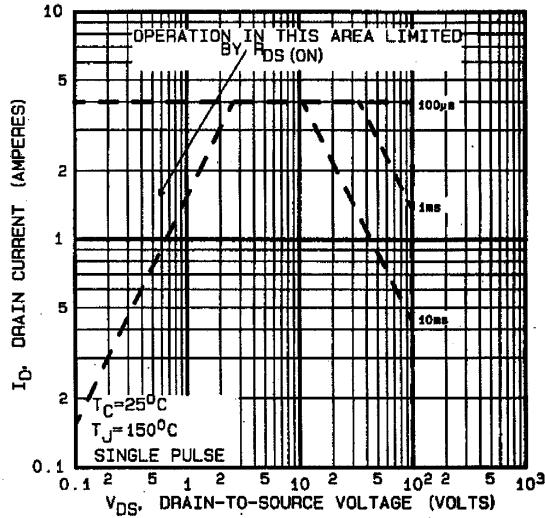





Fig 17. Normalized On-Resistance  
Vs. Temperature


**P-Channel  
Q2, Q4**




**Fig 18.** Typical Capacitance  
Vs.  
Drain-to-Source Voltage



**Fig 19.** Typical Gate Charge Vs.  
Gate-to-Source Voltage



**Fig 20.** Typical Source-Drain Diode  
Forward Voltage



**Fig 21.** Maximum Safe Operating  
Area

IRFG5110

International  
Rectifier

P-Channel  
Q2,Q4

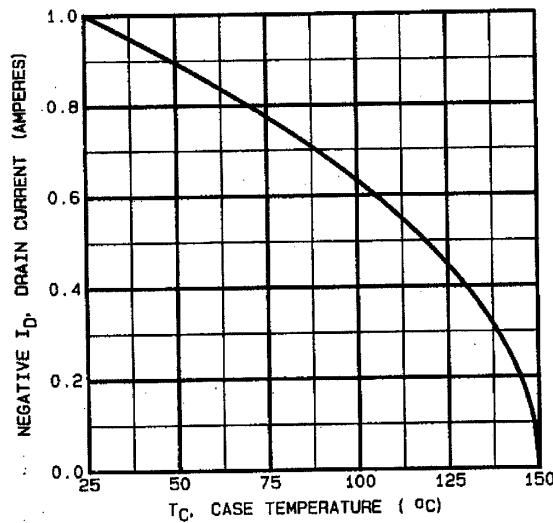



Fig 22. Maximum Drain Current Vs.  
Case Temperature

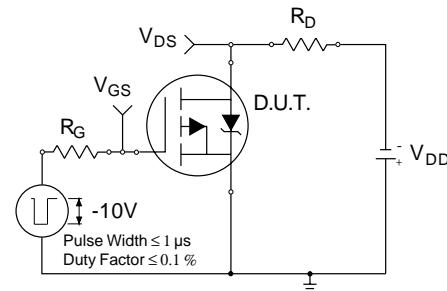
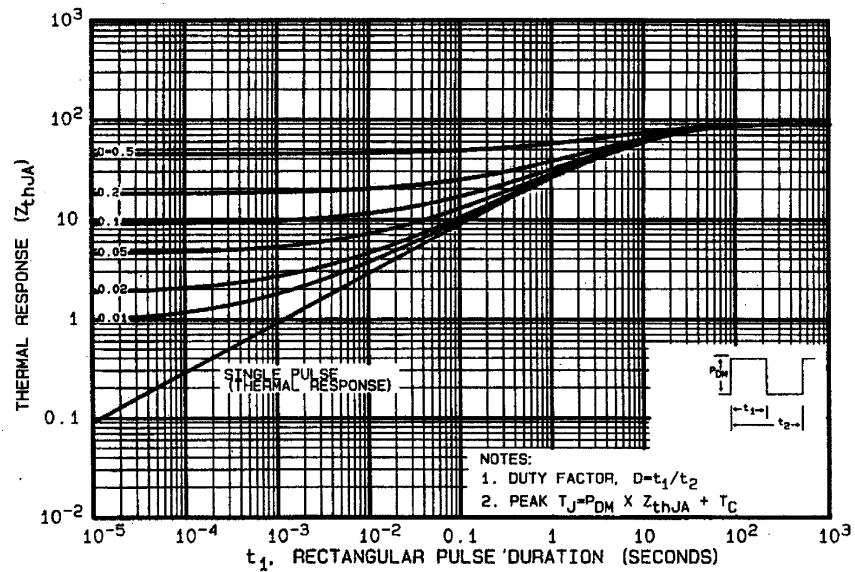
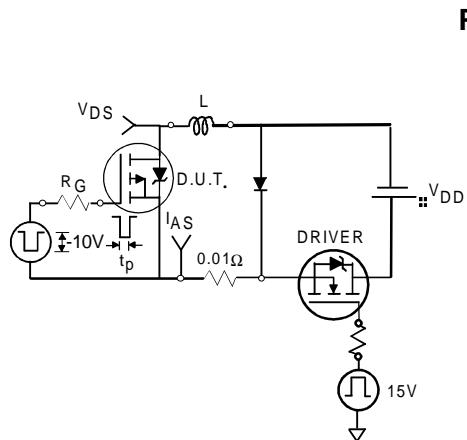
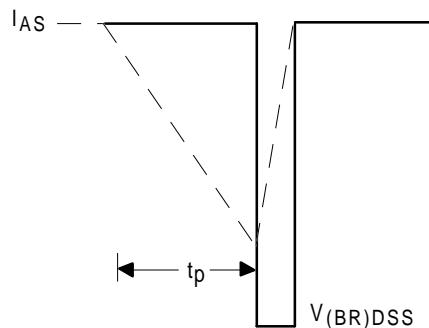
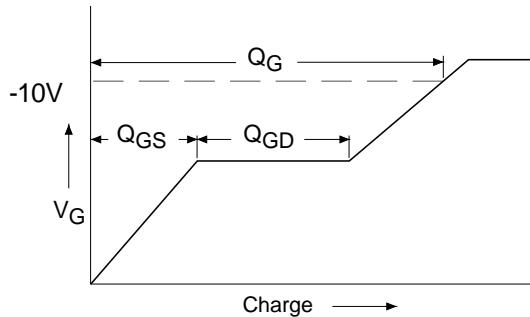



Fig 23a. Switching Time Test Circuit

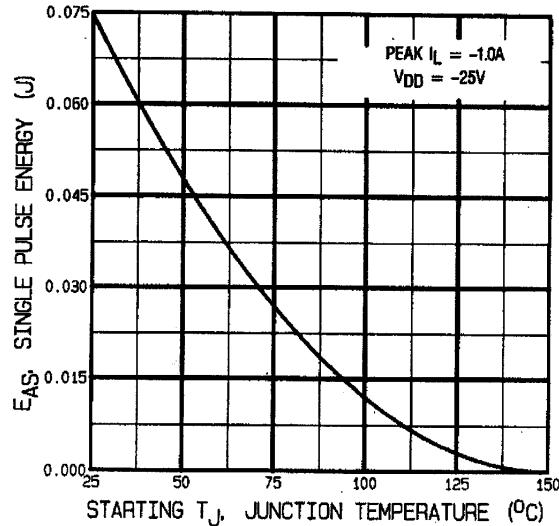


Fig 23b. Switching Time Waveforms

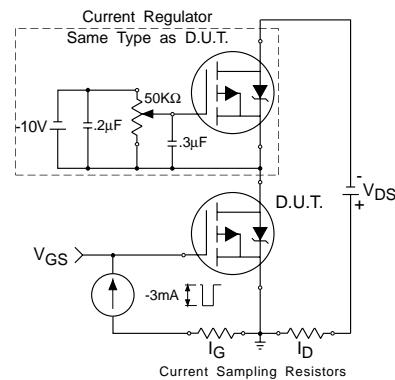






Fig 24. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient




**Fig 25a.** Unclamped Inductive Test Circuit




**Fig 25b.** Unclamped Inductive Waveforms



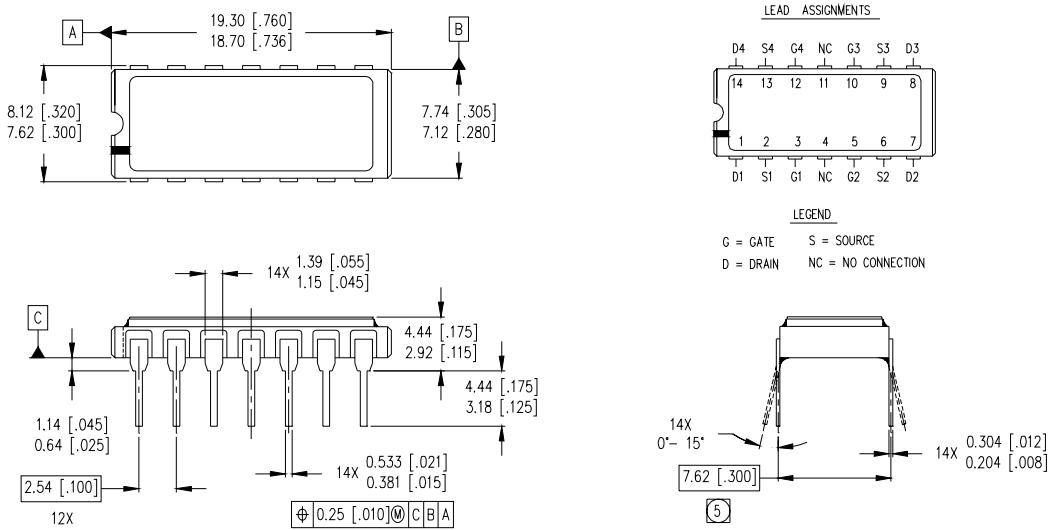
**Fig 26a.** Basic Gate Charge Waveform



**Fig 25c.** Maximum Avalanche Energy Vs. Drain Current



**Fig 26b.** Gate Charge Test Circuit


# IRFG5110

International  
**IR** Rectifier

## Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ②  $V_{DD} = 50V$ , starting  $T_J = 25^\circ C$ ,  $L = 150mH$ , Peak  $I_L = 1.0A$ ,  $V_{GS} = 10V$
- ③  $I_{SD} \leq 1.0A$ ,  $dI/dt \leq 75A/\mu s$ ,  $V_{DD} \leq 100V$ ,  $T_J \leq 150^\circ C$
- ④ Pulse width  $\leq 300 \mu s$ ; Duty Cycle  $\leq 2\%$
- ⑤  $V_{DD} = -25V$ , starting  $T_J = 25^\circ C$ ,  $L = 150mH$ , Peak  $I_L = -1.0A$ ,  $V_{GS} = -10V$
- ⑥  $I_{SD} \leq -1.0A$ ,  $dI/dt \leq -110A/\mu s$ ,  $V_{DD} \leq -100V$ ,  $T_J \leq 150^\circ C$

## Case Outline and Dimensions — MO-036AB



### NOTES:

1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE CONFORMS TO JEDEC OUTLINE MO-036AB.
5. MEASURED WITH THE LEADS CONSTRAINED TO BE PERPENDICULAR TO DATUM PLANE C.

International  
**IR** Rectifier

**IR WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903

Visit us at [www.irf.com](http://www.irf.com) for sales contact information.  
Data and specifications subject to change without notice. 04/02