

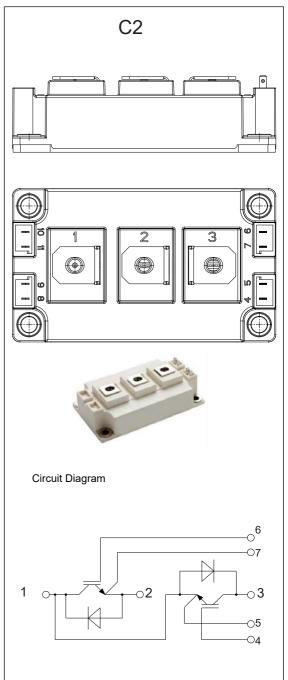
W

E502650

Features

- Low V_{CE(sat)} With SPT+ Technology
- V_{CE(sat)} With Positive Temperature Coefficient
- · Including Fast & Soft Recovery Anti-parallel FWD
- High Short Circuit Capability(10us)
- Low Inductance Module Structure
- Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant ("P" Suffix Designates RoHS Compliant. See Ordering Information)

Applications


- · Inverter for Motor Drive
- AC and DC Servo Driver Amplifier
- UPS(Uninterruptible Power Supplies)
- Soft Switching Welding Machine

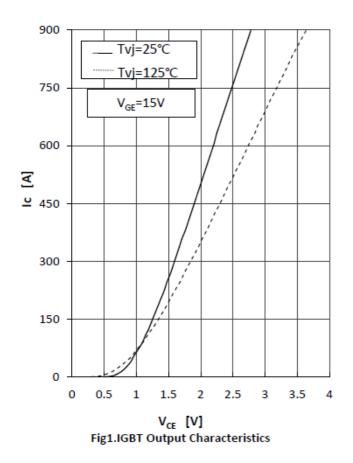
Maximum Ratings

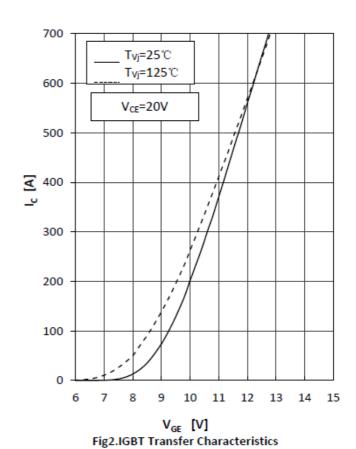
- Maximum Junction Temperature: 175°C
- Operating Junction Temperature Range: -40°C to +150°C
- Storage Temperature Range: -40°C to +125°C
- IGBT Thermal Resistance: 0.065 K/W Junction to Case
- Diode Thermal Resistance: 0.13 K/W Junction to Case
- Type Conductive Grease Applied Thermal Resistance: 0.033K/W Junction to Case-To-Sink

Parameter	Symbol	Rating	Unit	
	V _{CES}	CES 1200		
Continuous Collector Current @	I _C	450	Α	
Peak Collector Current @Tp=1ms		I _{CRM}	900	Α
Gate-Emitter Voltage@T _{vj} =25°C		V_{GE}	±20	V
Isolation Voltage @f=50Hz, t=1min		$V_{\rm iso}$	2500(Min)	V
Weight of Module		G	315	g
Module Electrodes Torque:M5		M _t	3~5	N*m
Module-to-Sink Torque :M6		Ms	3~5	N*m
Total Tower Dissipation	T _C =25°C T _{vjmax} =175°C	P _{tot}	2307	W

IGBT Modules 1200V 450A

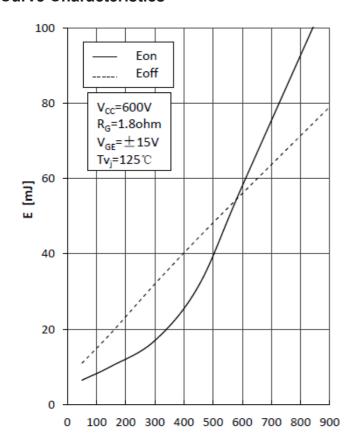
Electrical Characteristics of IGBT @ 25°C (Unless Otherwise Specified)

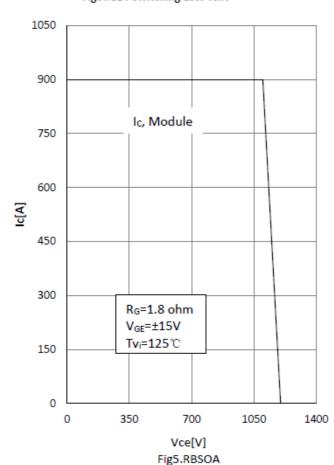

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Gate-Emitter Threshold Voltage	V _{GE(th)}	V _{CE} =V _{GE,} I _C =12mA,T _{vj} =25°C	5.2	5.8	6.4	V	
Collector-Emiter Cut-off Current	I _{CES}	V _{CE} =1200V, V _{GE} =0V,T _{vj} =25°C			1.0	- mA	
		V _{CE} =1200V, V _{GE} =0V,T _{vj} =125°C			5		
Collector-Emitter Saturation Voltage	V _{CE(sat)}	V _{GE} =15V, I _C =450A,T _{vj} =25°C		1.90	2.35	\/	
		V _{GE} =15V, I _C =450A,T _{vj} =125°C		2.30		V	
Gate Charge	Q_{G}			3.62		uC	
Input Capacitance	C _{ies}	V _{CE} =25V,V _{GE} =0V,f=1MHz,		25			
Reverse Transfer Capacitance	C _{res}	T _{vj} =25°C		1.1		nF	
Internal Gate Resistance	Rgint			0.7		Ω	
Gate Emitter Leakage Current	I _{GES}	V _{CE} =0V, V _{GE} =20V,T _{vj} =25°C			400	nA	
Turn-On Delay Time	t _{d(on)}			161			
Rise Time	t _r	V 000V		52		ns	
Turn-Off Delay Time	$t_{d(off)}$	V_{CE} =600V, I_{C} =450A, V_{GE} = \pm 15V, R_{G} =1.8 Ω , Tvj=25°C		502			
Fall Time	T _f			96			
Energy Dissipation During Turn-on Time	E _{on}			23.2		1	
Energy Dissipation During Turn-off Time	E _{off}			28.5		mJ	
Turn-On Delay Time	t _{d(on)}			192			
Rise Time	t _r	V_{CE} =600V, I_{C} =450A, V_{GE} = \pm 15V, R_{G} =1.8 Ω , Tvj=125°C		63			
Turn-Off Delay Time	t _{d(off)}			536		ns	
Fall Time	T _f			135			
Energy Dissipation During Turn-on Time	E _{on}			31.5		m l	
Energy Dissipation During Turn-off Time	E _{off}			44.3		mJ	
SC data	I _{SC}	$T_P \le 10$ us, $V_{GE} = 15$ V, $T_{Vj} = 150$ °C, $V_{CC} = 600, V_{CEM} \le 1200$ V		1800		А	

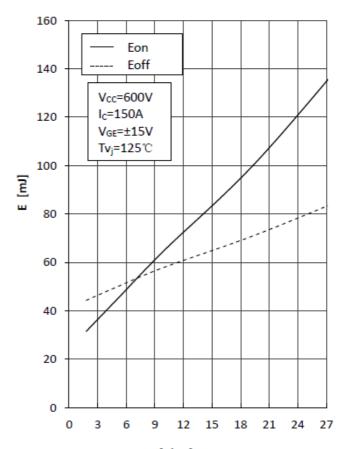


Electrical Characteristics of DIODE @ 25°C (Unless Otherwise Specified)

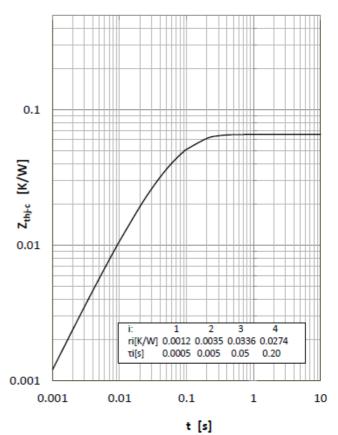
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Diode DC Forward Current	I _F	T _C =100°C		450		Α
Diode Peak Forward Current	I _{FRM}	I _{FRM} =2I _F		900		Α
Forward Voltage	V_{F}	I _F =450A, T _{vj} =25°C		2.1		V
	V F	I _F =450A, T _{vj} =125°C		2.15		
Recovered Charge	Q_{rr}	V_R =600V, I_F =450A, - di_F / dt =6500A/ us , T_{vj} =25°C		45		uC
Peak Revere Recovery Current	I _{rr}			383		Α
Reverse Recovery Energy	E _{rec}			21.2		mJ
Recovered Charge	Q _{rr}	V _R =600V, I _F =450A, -di _F /dt=9000A/us, T _{vj} =125°C		86		uC
Peak Revere Recovery Current	I _{rr}			453		Α
Reverse Recovery Energy	E _{rec}			37.2		mJ


Curve Characteristics

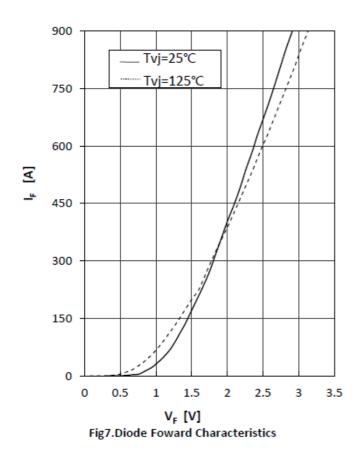


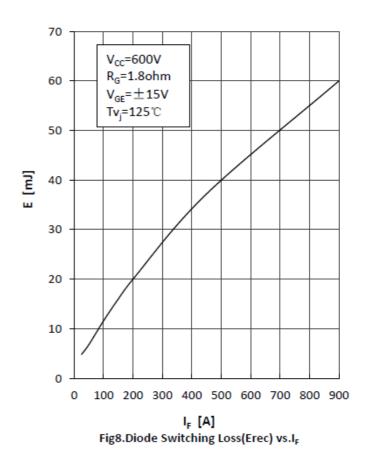


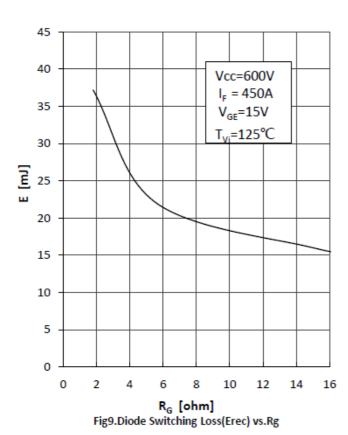
Curve Characteristics

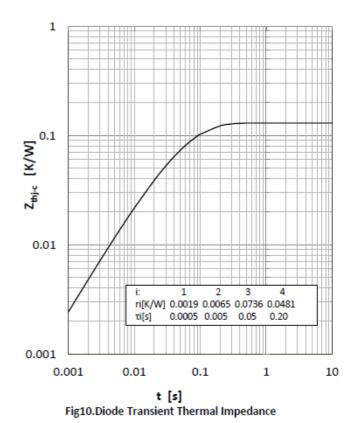


I_C [A] Fig3.IGBT Switching Loss vs.Ic

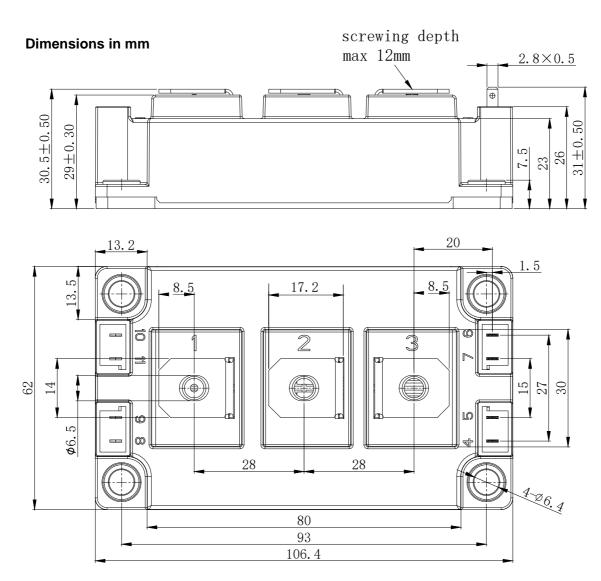



Rg [ohm] Fig4.IGBT Switching Loss vs.Rg





Curve Characteristics



Package Dimensions

C2

Ordering Information

Device	Packing	
Part Number-BP	Bulk: 6pcs/Box ; 30pcs/Ctn	

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp.** products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.