Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyright work, you may have a right to sue for relief under that Act.
MRF24J40

IEEE 802.15.4™ 2.4 GHz RF Transceiver

Features:
- IEEE 802.15.4™ Standard Compliant RF Transceiver
- Supports ZigBee®, MiWi™, MiWi P2P and Proprietary Wireless Networking Protocols
- Simple, 4-Wire Serial Peripheral Interface (SPI)
- Integrated 20 MHz and 32.768 kHz Crystal Oscillator Circuitry
- Low-Current Consumption:
 - RX mode: 19 mA (typical)
 - TX mode: 23 mA (typical)
 - Sleep: 2 μA (typical)
- Small, 40-Pin Leadless QFN 6x6 mm² Package

RF/Analog Features:
- ISM Band 2.405-2.48 GHz Operation
- Data Rate: 250 kbps (IEEE 802.15.4); 625 kbps (Turbo mode)
- -95 dBm Typical Sensitivity with +5 dBm Maximum Input Level
- +0 dBm Typical Output Power with 36 dB TX Power Control Range
- Differential RF Input/Output with Integrated TX/RX Switch
- Integrated Low Phase Noise VCO, Frequency Synthesizer and PLL Loop Filter
- Digital VCO and Filter Calibration
- Integrated RSSI ADC and I/Q DACs
- Integrated LDO
- High Receiver and RSSI Dynamic Range

MAC/Baseband Features:
- Hardware CSMA-CA Mechanism, Automatic Acknowledgement Response and FCS Check
- Independent Beacon, Transmit and GTS FIFO
- Supports all CCA modes and RSSI/ED
- Automatic Packet Retransmit Capability
- Hardware Security Engine (AES-128) with CTR, CCM and CBC-MAC modes
- Supports Encryption and Decryption for MAC Sublayer and Upper Layer

Pin Diagram:

40-Pin QFN

Note: Backside center pad is GND.
TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip’s Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.
1.0 OVERVIEW

The MRF24J40 is an IEEE 802.15.4™ Standard compliant 2.4 GHz RF transceiver. It integrates the PHY and MAC functionality in a single chip solution. Figure 1-1 shows a simplified block diagram of a MRF24J40 wireless node. The MRF24J40 creates a low-cost, low-power, low data rate (250 or 625 kbps) Wireless Personal Area Network (WPAN) device. The MRF24J40 interfaces to many popular Microchip PIC® microcontrollers via a 4-wire serial SPI interface, interrupt, wake and Reset pins.

The MRF24J40 provides hardware support for:
- Energy Detection
- Carrier Sense
- Three CCA Modes
- CSMA-CA Algorithm
- Automatic Packet Retransmission
- Automatic Acknowledgment
- Independent Transmit, Beacon and GTS FIFO Buffers
- Security Engine supports Encryption and Decryption for MAC Sublayer and Upper Layer

These features reduce the processing load, allowing the use of low-cost 8-bit microcontrollers.

The MRF24J40 is compatible with Microchip's ZigBee®, MiWi™ and MiWi P2P software stacks. Each software stack is available as a free download, including source code, from the Microchip web site: http://www.microchip.com/wireless.

FIGURE 1-1: WIRELESS NODE BLOCK DIAGRAM
1.1 IEEE 802.15.4-2003 Standard

The MRF24J40 is compliant with the IEEE 802.15.4™-2003 Standard. The Standard specifies the physical (PHY) and Media Access Controller (MAC) functions that form the basis for a wireless network device. Figure 1-2 shows the structure of the PHY packet and MAC frame.

It is highly recommended that the design engineer be familiar with the IEEE 802.15.4-2003 Standard in order to best understand the configuration and operation of the MRF24J40. The Standard can be downloaded from the IEEE web site: http://www.ieee.org.
2.0 HARDWARE DESCRIPTION

2.1 2.1 Overview

The MRF24J40 is an IEEE 802.15.4 Standard compliant 2.4 GHz RF transceiver. It integrates the PHY and MAC functionality in a single chip solution. Figure 2-1 is a block diagram of the MRF24J40 circuitry.

A frequency synthesizer is clocked by an external 20 MHz crystal and generates a 2.4 GHz RF frequency.

The receiver is a low-IF architecture consisting of a Low Noise Amplifier (LNA), down conversion mixers, poly-phase channel filters and baseband limiting amplifiers with a Receiver Signal Strength Indicator (RSSI).

The transmitter is a direct conversion architecture with a 0 dBm maximum output (typical) and 36 dB power control range.

An internal Transmit/Receive (TR) switch combines the transmitter and receiver circuits into differential RFP and RFN pins. These pins are connected to impedance matching circuitry (balun) and antenna. An external Power Amplifier (PA) and/or LNA can be controlled via the GPIO pins.

Six General Purpose Input/Output (GPIO) pins can be configured for control or monitoring purposes. They can also be configured to control external PA/LNA RF switches.

The power management circuitry consists of an integrated Low Dropout (LDO) voltage regulator. The MRF24J40 can be placed into a very low-current (2 μA typical) Sleep mode. An internal 100 kHz oscillator or 32 kHz external crystal oscillator can be used for Sleep mode timing.

The Media Access Controller (MAC) circuitry verifies reception and formats for transmission IEEE 802.15.4 Standard compliant packets. Data is buffered in Transmit and Receive FIFOs. Carrier Sense Multiple Access-Collision Avoidance (CSMA-CA), superframe constructor, receive frame filter and security engine functionality are implemented in hardware. The security engine provides hardware circuitry for AES-128 with CTR, CCM and CBC-MAC modes.

Control of the transceiver is via a 4-wire SPI, interrupt, wake and Reset pins.
2.2 Block Diagram

FIGURE 2-1: MRF24J40 ARCHITECTURE BLOCK DIAGRAM
2.3 Pin Descriptions

TABLE 2-1: MRF24J40 PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Power</td>
<td>RF power supply. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>2</td>
<td>RFP</td>
<td>AI/O</td>
<td>Differential RF input/output (+).</td>
</tr>
<tr>
<td>3</td>
<td>RFN</td>
<td>AI/O</td>
<td>Differential RF input/output (-).</td>
</tr>
<tr>
<td>4</td>
<td>VDD</td>
<td>Power</td>
<td>RF power supply. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>5</td>
<td>VDD</td>
<td>Power</td>
<td>Guard ring power supply. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground</td>
<td>Guard ring ground.</td>
</tr>
<tr>
<td>7</td>
<td>GPIO0</td>
<td>DIO</td>
<td>General purpose digital I/O, also used as external PA enable.</td>
</tr>
<tr>
<td>8</td>
<td>GPIO1</td>
<td>DIO</td>
<td>General purpose digital I/O, also used as external TX/RX switch control.</td>
</tr>
<tr>
<td>9</td>
<td>GPIO5</td>
<td>DIO</td>
<td>General purpose digital I/O.</td>
</tr>
<tr>
<td>10</td>
<td>GPIO4</td>
<td>DIO</td>
<td>General purpose digital I/O.</td>
</tr>
<tr>
<td>11</td>
<td>GPIO2</td>
<td>DIO</td>
<td>General purpose digital I/O, also used as external TX/RX switch control.</td>
</tr>
<tr>
<td>12</td>
<td>GPIO3</td>
<td>DIO</td>
<td>General purpose digital I/O.</td>
</tr>
<tr>
<td>13</td>
<td>RESET</td>
<td>DI</td>
<td>Global hardware Reset pin active-low.</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Ground</td>
<td>Ground for digital circuit.</td>
</tr>
<tr>
<td>15</td>
<td>WAKE</td>
<td>DI</td>
<td>External wake-up trigger (must be enabled in software).</td>
</tr>
<tr>
<td>16</td>
<td>INT</td>
<td>DO</td>
<td>Interrupt pin to microcontroller.</td>
</tr>
<tr>
<td>17</td>
<td>SDO</td>
<td>DO</td>
<td>Serial interface data output from MRF24J40.</td>
</tr>
<tr>
<td>18</td>
<td>SDI</td>
<td>DI</td>
<td>Serial interface data input to MRF24J40.</td>
</tr>
<tr>
<td>19</td>
<td>SCK</td>
<td>DI</td>
<td>Serial interface clock.</td>
</tr>
<tr>
<td>20</td>
<td>CS</td>
<td>DI</td>
<td>Serial interface enable.</td>
</tr>
<tr>
<td>21</td>
<td>VDD</td>
<td>Power</td>
<td>Digital circuit power supply. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>Ground</td>
<td>Ground for digital circuit.</td>
</tr>
<tr>
<td>23</td>
<td>NC</td>
<td>—</td>
<td>No Connection.</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>Ground</td>
<td>Ground for digital circuit.</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>Ground</td>
<td>Ground for digital circuit.</td>
</tr>
<tr>
<td>26</td>
<td>NC</td>
<td>—</td>
<td>No Connection. (Allow pin to float; do not connect signal.)</td>
</tr>
<tr>
<td>27</td>
<td>LPOSC2</td>
<td>AI</td>
<td>32 kHz crystal input.</td>
</tr>
<tr>
<td>28</td>
<td>LPOSC1</td>
<td>AI</td>
<td>32 kHz crystal input.</td>
</tr>
<tr>
<td>29</td>
<td>NC</td>
<td>—</td>
<td>No Connection. (Allow pin to float; do not connect signal.)</td>
</tr>
<tr>
<td>30</td>
<td>NC</td>
<td>—</td>
<td>No Connection. (Allow pin to float; do not connect signal.)</td>
</tr>
<tr>
<td>31</td>
<td>VDD</td>
<td>Power</td>
<td>Power supply for band gap reference circuit. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>32</td>
<td>VDD</td>
<td>Power</td>
<td>Power supply for analog circuit. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>33</td>
<td>OSC2</td>
<td>AI</td>
<td>20 MHz crystal input.</td>
</tr>
<tr>
<td>34</td>
<td>OSC1</td>
<td>AI</td>
<td>20 MHz crystal input.</td>
</tr>
<tr>
<td>35</td>
<td>VDD</td>
<td>Power</td>
<td>PLL power supply. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>36</td>
<td>GND</td>
<td>Ground</td>
<td>Ground for PLL.</td>
</tr>
<tr>
<td>37</td>
<td>VDD</td>
<td>Power</td>
<td>Charge pump power supply. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>38</td>
<td>NC</td>
<td>—</td>
<td>No Connection.</td>
</tr>
<tr>
<td>39</td>
<td>VDD</td>
<td>Power</td>
<td>VCO supply. Bypass with a capacitor as close to the pin as possible.</td>
</tr>
<tr>
<td>40</td>
<td>LCAP</td>
<td>—</td>
<td>PLL loop filter external capacitor. Connected to external 100 pF capacitor.</td>
</tr>
</tbody>
</table>

Legend: A = Analog, D = Digital, I = Input, O = Output
2.4 Power and Ground Pins

Recommended bypass capacitors are listed in Table 2-2. VDD pins 1 and 31 require two bypass capacitors to ensure sufficient bypass decoupling. Minimize trace length from the VDD pin to the bypass capacitors and make them as short as possible.

<table>
<thead>
<tr>
<th>VDD Pin</th>
<th>Bypass Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47 pF and 0.01 μF</td>
</tr>
<tr>
<td>4</td>
<td>47 pF</td>
</tr>
<tr>
<td>5</td>
<td>0.1 μF</td>
</tr>
<tr>
<td>21</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>31</td>
<td>47 pF and 0.01 μF</td>
</tr>
<tr>
<td>32</td>
<td>47 pF</td>
</tr>
<tr>
<td>35</td>
<td>47 pF</td>
</tr>
<tr>
<td>37</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>39</td>
<td>1 μF</td>
</tr>
</tbody>
</table>

2.5 20 MHz Main Oscillator

The 20 MHz main oscillator provides the main frequency (MAINCLK) signal to internal RF, baseband and MAC circuitry. An external 20 MHz quartz crystal is connected to the OSC1 and OSC2 pins as shown in Figure 2-2. The crystal parameters are listed in Table 2-3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Frequency Tolerance at 25°C</td>
<td>±20 ppm (2)</td>
</tr>
<tr>
<td>Frequency Stability over Operating Temperature Range</td>
<td>±20 ppm (2)</td>
</tr>
<tr>
<td>Mode</td>
<td>Fundamental</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>10-15 pF</td>
</tr>
<tr>
<td>ESR</td>
<td>80 kΩ max.</td>
</tr>
</tbody>
</table>

Note 1: These values are for design guidance only.

Note 2: IEEE 802.15.4™ Standard specifies transmitted center frequency tolerance shall be ±40 ppm maximum.

2.6 Phase-Locked Loop

The Phase-Locked Loop (PLL) circuitry requires one external capacitor connected to pin 40 (LCAP). The recommended value is 100 pF. The PCB layout around the capacitor and pin 40 should be designed carefully such as to minimize interference to the PLL.

2.7 32 kHz External Crystal Oscillator

The 32 kHz external crystal oscillator provides one of two Sleep clock (SLPCLK) frequencies to Sleep mode counters. The Sleep mode counters time the Beacon Interval (BI) and inactive period for a beacon-enabled device and the Sleep interval for a nonbeacon-enabled device. Refer to Section 3.15 “Sleep” for more information.

The SLPCLK frequency is selectable between the 32 kHz external crystal oscillator or 100 kHz internal oscillator. The 32 kHz external crystal oscillator provides better frequency accuracy and stability than the 100 kHz internal oscillator. An external 32 kHz tuning fork crystal is connected to the LPOSC1 and LPOSC2 pins, as shown in Figure 2-3. The crystal parameters are listed in Table 2-4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>32.768 kHz</td>
</tr>
<tr>
<td>Frequency Tolerance</td>
<td>±20 ppm</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>12.5 pF</td>
</tr>
<tr>
<td>ESR</td>
<td>70 kΩ max.</td>
</tr>
</tbody>
</table>

Note 1: These values are for design guidance only.
2.8 100 kHz Internal Oscillator

The 100 kHz internal oscillator requires no external components and provides one of two Sleep clock (SLPCLK) frequencies to Sleep mode counters. The Sleep mode counters time the Beacon Interval (BI) and inactive period for a beacon-enabled device and the Sleep interval for a nonbeacon-enabled device. Refer to Section 3.15 “Sleep” for more information.

The SLPCLK frequency is selectable between the 32 kHz external crystal oscillator and 100 kHz internal oscillator. The 32 kHz external crystal oscillator provides better frequency accuracy and stability than the 100 kHz internal oscillator. It is recommended that the 100 kHz internal oscillator be calibrated before use. The calibration procedure is given in Section 3.15.1.2 “Sleep Clock Calibration”.

2.9 Reset (RESET) Pin

An external hardware Reset can be performed by asserting the RESET pin 13 low. The MRF24J40 will be released from Reset approximately 250 μs after the RESET pin is released. The RESET pin has an internal weak pull-up resistor.

2.10 Interrupt (INT) Pin

The Interrupt (INT) pin 16 provides an interrupt signal to the host microcontroller from the MRF24J40. The polarity is configured via the INTEDGE bit in the SLPCON0 (0x211<1>) register. Interrupts have to be enabled and unmasked before the INT pin is active. Refer to Section 3.3 “Interrupts” for a functional description of interrupts.

Note: The INT pin will remain high or low, depending on INTEDGE polarity setting, until INSTAT register is read.

2.11 Wake (WAKE) Pin

The Wake (WAKE) pin 15 provides an external wake-up signal to the MRF24J40 from the host microcontroller. It is used in conjunction with the Sleep modes of the MRF24J40. The WAKE pin is disabled by default. Refer to Section 3.15.2 “Immediate Sleep and Wake-up Mode” for a functional description of the Immediate Sleep and Wake-up modes.

2.12 General Purpose Input/Output (GPIO) Pins

Six GPIO pins can be configured individually for control or monitoring purposes. Input or output selection is configured by the TRISGPIO (0x34) register. GPIO data can be read/written to via the GPIO (0x33) register.

The GPIO pins have limited output drive capability. Table 2-5 lists the individual GPIO pin source current limits.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Maximum Current Sourced</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIO0</td>
<td>4 mA</td>
</tr>
<tr>
<td>GPIO1</td>
<td>1 mA</td>
</tr>
<tr>
<td>GPIO2</td>
<td>1 mA</td>
</tr>
<tr>
<td>GPIO3</td>
<td>1 mA</td>
</tr>
<tr>
<td>GPIO4</td>
<td>1 mA</td>
</tr>
<tr>
<td>GPIO5</td>
<td>1 mA</td>
</tr>
</tbody>
</table>

GPIO0, GPIO1 and GPIO2 can be configured to control external PA, LNA and RF switches by the internal RF state machine. This allows the external PA and LNA to be controlled by the MRF24J40 without any host microcontroller intervention. Refer to Section 4.2 “External PA/LNA Control” for control register configuration, timing diagrams and application information.
2.13 Serial Peripheral Interface (SPI) Port Pins

The MRF24J40 communicates with a host microcontroller via a 4-wire SPI port as a slave device. The MRF24J40 supports SPI (mode 0,0) which requires that SCK idles in a low state. The CS pin must be held low while communicating with the MRF24J40. Figure 2-4 shows timing for a write operation. Data is received by the MRF24J40 via the SDI pin and is clocked in on the rising edge of SCK. Figure 2-5 shows timing for a read operation. Data is sent by the MRF24J40 via the SDO pin and is clocked out on the falling edge of SCK.

Note: The SDO pin 17 defaults to a low state when CS is high (the MRF24J40 is not selected). If the MRF24J40 is to share a SPI bus, a tri-state buffer should be placed on the SDO signal to provide a high-impedance signal to the SPI bus. See Section 4.4 “MRF24J40 Schematic and Bill of Materials” for an example application circuit.

FIGURE 2-4: SPI PORT WRITE (INPUT) TIMING

![SPI PORT WRITE (INPUT) TIMING Diagram](image)

FIGURE 2-5: SPI PORT READ (OUTPUT) TIMING

![SPI PORT READ (OUTPUT) TIMING Diagram](image)
2.14 Memory Organization

Memory in the MRF24J40 is implemented as static RAM and is accessible via the SPI port. Memory is functionally divided into control registers and data buffers (FIFOs), as shown in Figure 2-6. Control registers provide control, status and device addressing for MRF24J40 operations. FIFOs serve as temporary buffers for data transmission, reception and security keys. Memory is accessed via two addressing methods: Short and Long.

FIGURE 2-6: MEMORY MAP FOR MRF24J40
2.14.1 SHORT ADDRESS REGISTER INTERFACE

The short address memory space contains control registers with a 6-bit address range of 0x00 to 0x3F. Figure 2-7 shows a short address read and Figure 2-8 shows a short address write. The 8-bit SPI transfer begins with a '0' to indicate a short address transaction. It is followed by the 6-bit register address, Most Significant bit (MSb) first. The 8th bit indicates if it is a read ('0') or write ('1') transaction.

FIGURE 2-7: SHORT ADDRESS READ

FIGURE 2-8: SHORT ADDRESS WRITE
2.14.2 LONG ADDRESS REGISTER INTERFACE

The long address memory space contains control registers and FIFOs with a 10-bit address range of 0x000 to 0x38F. Figure 2-9 shows a long address read and Figure 2-10 shows a long address write. The 12-bit SPI transfer begins with a ‘1’ to indicate a long address transaction. It is followed by the 10-bit register address, Most Significant bit (MSb) first. The 12th bit indicates if it is a read (‘0’) or write (‘1’) transaction.

FIGURE 2-9: LONG ADDRESS READ

FIGURE 2-10: LONG ADDRESS WRITE
2.15 Control Register Description

Control registers provide control, status and device addressing for MRF24J40 operations. The following figures, tables and register definitions describe the control register operation.

2.15.1 CONTROL REGISTER MAP

FIGURE 2-11: SHORT ADDRESS CONTROL REGISTER MAP FOR MRF24J40

FIGURE 2-12: LONG ADDRESS CONTROL REGISTER MAP FOR MRF24J40
2.15.2 CONTROL REGISTER SUMMARY

TABLE 2-6: SHORT ADDRESS CONTROL REGISTER SUMMARY FOR MRF24J40

<table>
<thead>
<tr>
<th>Addr.</th>
<th>File Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>RXMCR</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>PANCOORD</td>
<td>COORD</td>
<td>ERRPKT</td>
<td>PROMI</td>
<td>0000</td>
</tr>
<tr>
<td>0x01</td>
<td>PANIDL</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>PANIDH</td>
<td>PANIDH<15:8></td>
<td>0000</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>0x02</td>
<td>PANIDH</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>PANIDH</td>
<td>PANIDH<15:8></td>
<td>0000</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>0x03</td>
<td>SADRL</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>SADRL</td>
<td>Short Address Low Byte (SADRL<7:0>)</td>
<td>0000</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>0x04</td>
<td>SADRH</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>SADRH</td>
<td>Short Address High Byte (SADRH<15:8>)</td>
<td>0000</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>0x05</td>
<td>EADR0</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>EADR0</td>
<td>64-Bit Extended Address bits (EADR0<7:0>)</td>
<td>0000</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0x06</td>
<td>EADR1</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>EADR1</td>
<td>64-Bit Extended Address bits (EADR1<15:8>)</td>
<td>0000</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0x07</td>
<td>EADR2</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>EADR2</td>
<td>64-Bit Extended Address bits (EADR2<23:16>)</td>
<td>0000</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0x08</td>
<td>EADR3</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>EADR3</td>
<td>64-Bit Extended Address bits (EADR3<31:24>)</td>
<td>0000</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>0x09</td>
<td>EADR4</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>EADR4</td>
<td>64-Bit Extended Address bits (EADR4<39:32>)</td>
<td>0000</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>0x0A</td>
<td>EADR5</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>EADR5</td>
<td>64-Bit Extended Address bits (EADR5<47:40>)</td>
<td>0000</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>0x0B</td>
<td>EADR6</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>EADR6</td>
<td>64-Bit Extended Address bits (EADR6<55:48>)</td>
<td>0000</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>0x0C</td>
<td>EADR7</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>EADR7</td>
<td>64-Bit Extended Address bits (EADR7<63:56>)</td>
<td>0000</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>0x0D</td>
<td>RXFLUSH</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>RXFLUSH</td>
<td>r</td>
<td>WAKEPOL</td>
<td>WAKEPOL</td>
<td>CmdOnly</td>
</tr>
<tr>
<td>0x0E</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000</td>
</tr>
<tr>
<td>0x0F</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000</td>
</tr>
<tr>
<td>0x10</td>
<td>ORDER</td>
<td>B03</td>
<td>B02</td>
<td>B01</td>
<td>B00</td>
<td>SO3</td>
<td>SO2</td>
<td>SO1</td>
<td>SO0</td>
<td>1111</td>
</tr>
<tr>
<td>0x11</td>
<td>TXMCR</td>
<td>NOCSMA</td>
<td>BATLIFEXT</td>
<td>SLOTTED</td>
<td>MACMNBE1</td>
<td>MACMNBE0</td>
<td>CSMAF2</td>
<td>CSMAF1</td>
<td>CSMAF0</td>
<td>0011</td>
</tr>
<tr>
<td>0x12</td>
<td>ACKTMOUT</td>
<td>DRPACK</td>
<td>MAWD6</td>
<td>MAWD5</td>
<td>MAWD4</td>
<td>MAWD3</td>
<td>MAWD2</td>
<td>MAWD1</td>
<td>MAWD0</td>
<td>0011</td>
</tr>
<tr>
<td>0x13</td>
<td>ESLOTG1</td>
<td>GTS1-3</td>
<td>GTS1-2</td>
<td>GTS1-1</td>
<td>GTS1-0</td>
<td>CAP3</td>
<td>CAP2</td>
<td>CAP1</td>
<td>CAP0</td>
<td>0111</td>
</tr>
<tr>
<td>0x14</td>
<td>SYMTICKL</td>
<td>TCKP7</td>
<td>TCKP6</td>
<td>TCKP5</td>
<td>TCKP4</td>
<td>TCKP3</td>
<td>TCKP2</td>
<td>TCKP1</td>
<td>TCKP0</td>
<td>0110</td>
</tr>
<tr>
<td>0x15</td>
<td>SYMTICKH</td>
<td>TXONT6</td>
<td>TXONT5</td>
<td>TXONT4</td>
<td>TXONT3</td>
<td>TXONT2</td>
<td>TXONT1</td>
<td>TXONT0</td>
<td>TXONT8</td>
<td>0101</td>
</tr>
<tr>
<td>0x16</td>
<td>PACON0</td>
<td>PAONT7</td>
<td>PAONT6</td>
<td>PAONT5</td>
<td>PAONT4</td>
<td>PAONT3</td>
<td>PAONT2</td>
<td>PAONT1</td>
<td>PAONT0</td>
<td>0010</td>
</tr>
<tr>
<td>0x17</td>
<td>PACON1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>PAONT3</td>
<td>PAONT2</td>
<td>PAONT1</td>
<td>PAONT0</td>
<td>0101</td>
<td></td>
</tr>
<tr>
<td>0x18</td>
<td>PACON2</td>
<td>FIFOEN</td>
<td>TXONT3</td>
<td>TXONT2</td>
<td>TXONT1</td>
<td>TXONT0</td>
<td>TXONT9</td>
<td>TXONT8</td>
<td>TXONT7</td>
<td>1000</td>
</tr>
<tr>
<td>0x19</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000</td>
<td>—</td>
</tr>
<tr>
<td>0x1A</td>
<td>TXBCON0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXBSECEN</td>
<td>TXBTRIG</td>
</tr>
<tr>
<td>0x1B</td>
<td>TXONCON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>FPSTAT</td>
<td>INDIRECT</td>
<td>TXNACKREQ</td>
<td>TXNSECEN</td>
<td>TXNTRIG</td>
<td>0000</td>
</tr>
<tr>
<td>0x1C</td>
<td>TXG1CON</td>
<td>TXG1RETRY1</td>
<td>TXG1RETRY0</td>
<td>TXG1SLOT2</td>
<td>TXG1SLOT1</td>
<td>TXG1SLOT0</td>
<td>TXG1ACKREQ</td>
<td>TXG1SECEN</td>
<td>TXG1TRIG</td>
<td>0000</td>
</tr>
<tr>
<td>0x1D</td>
<td>TXG2CON</td>
<td>TXG2RETRY1</td>
<td>TXG2RETRY0</td>
<td>TXG2SLOT2</td>
<td>TXG2SLOT1</td>
<td>TXG2SLOT0</td>
<td>TXG2ACKREQ</td>
<td>TXG2SECEN</td>
<td>TXG2TRIG</td>
<td>0000</td>
</tr>
</tbody>
</table>

Legend: r = reserved
TABLE 2-6: SHORT ADDRESS CONTROL REGISTER SUMMARY FOR MRF24J40 (CONTINUED)

<table>
<thead>
<tr>
<th>Addr. File Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR</th>
<th>Details on Page:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1E ESLOTG23</td>
<td>GTS3-3</td>
<td>GTS3-2</td>
<td>GTS3-1</td>
<td>GTS3-0</td>
<td>GTS2-3</td>
<td>GTS2-2</td>
<td>GTS2-1</td>
<td>GTS2-0</td>
<td>0000</td>
<td>39</td>
</tr>
<tr>
<td>0x1F ESLOTG45</td>
<td>GTS5-3</td>
<td>GTS5-2</td>
<td>GTS5-1</td>
<td>GTS5-0</td>
<td>GTS4-3</td>
<td>GTS4-2</td>
<td>GTS4-1</td>
<td>GTS4-0</td>
<td>0000</td>
<td>39</td>
</tr>
<tr>
<td>0x20 ESLOTG67</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>GTS6-3</td>
<td>GTS6-2</td>
<td>GTS6-1</td>
<td>GTS6-0</td>
<td>0000</td>
<td>39</td>
</tr>
<tr>
<td>0x21 TXPEND</td>
<td>MLIFS5</td>
<td>MLIFS4</td>
<td>MLIFS3</td>
<td>MLIFS2</td>
<td>MLIFS1</td>
<td>MLIFS0</td>
<td>GTS3SWITCH</td>
<td>FPACK</td>
<td>1000</td>
<td>0100</td>
</tr>
<tr>
<td>0x22 WAKECON</td>
<td>IMMWake</td>
<td>REGWake</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>0000</td>
<td>41</td>
</tr>
<tr>
<td>0x23 FRMOFFSET</td>
<td>OFFSET7</td>
<td>OFFSET6</td>
<td>OFFSET5</td>
<td>OFFSET4</td>
<td>OFFSET3</td>
<td>OFFSET2</td>
<td>OFFSET1</td>
<td>OFFSET0</td>
<td>0000</td>
<td>42</td>
</tr>
<tr>
<td>0x24 TXSTAT</td>
<td>TXNRETRY1</td>
<td>TXNRETRY0</td>
<td>CCAFAL</td>
<td>TXG2FNT</td>
<td>TXG1FNT</td>
<td>TXG2STAT</td>
<td>TXG1STAT</td>
<td>TXNSTAT</td>
<td>0000</td>
<td>43</td>
</tr>
<tr>
<td>0x25 TXBCON1</td>
<td>TXBMSK</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0001</td>
<td>0000</td>
</tr>
<tr>
<td>0x26 GATECLK</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000</td>
<td>44</td>
</tr>
<tr>
<td>0x27 TXTIME</td>
<td>TURNTIME3</td>
<td>TURNTIME2</td>
<td>TURNTIME1</td>
<td>TURNTIME0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>0x28 HSYMTMR1</td>
<td>HSYMTMR7</td>
<td>HSYMTMR6</td>
<td>HSYMTMR5</td>
<td>HSYMTMR4</td>
<td>HSYMTMR3</td>
<td>HSYMTMR2</td>
<td>HSYMTMR1</td>
<td>HSYMTMR0</td>
<td>0000</td>
<td>46</td>
</tr>
<tr>
<td>0x29 HSYMTMR15</td>
<td>HSYMTMR15</td>
<td>HSYMTMR14</td>
<td>HSYMTMR13</td>
<td>HSYMTMR12</td>
<td>HSYMTMR11</td>
<td>HSYMTMR10</td>
<td>HSYMTMR9</td>
<td>HSYMTMR8</td>
<td>0000</td>
<td>47</td>
</tr>
<tr>
<td>0x2A SOFTRST</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>0x2B Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000</td>
<td>—</td>
</tr>
<tr>
<td>0x2C SECCON0</td>
<td>SECGNORE</td>
<td>SECSTART</td>
<td>RXCIPHER2</td>
<td>RXCIPHER1</td>
<td>RXCIPHER0</td>
<td>TXCIPHER2</td>
<td>TXCIPHER1</td>
<td>TXCIPHER0</td>
<td>0000</td>
<td>49</td>
</tr>
<tr>
<td>0x2D SECCON1</td>
<td>r</td>
<td>TXCIPHER2</td>
<td>TXCIPHER1</td>
<td>TXCIPHER0</td>
<td>r</td>
<td>DISDEC</td>
<td>DISDEC</td>
<td>0000</td>
<td>0000</td>
<td>50</td>
</tr>
<tr>
<td>0x2E TXSTBL</td>
<td>RFSTBL3</td>
<td>RFSTBL2</td>
<td>RFSTBL1</td>
<td>RFSTBL0</td>
<td>MSIFS3</td>
<td>MSIFS2</td>
<td>MSIFS1</td>
<td>MSIFS0</td>
<td>0111</td>
<td>0101</td>
</tr>
<tr>
<td>0x2F Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- r = reserved
TABLE 2-6: SHORT ADDRESS CONTROL REGISTER SUMMARY FOR MRF24J40 (CONTINUED)

<table>
<thead>
<tr>
<th>Addr.</th>
<th>File Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR</th>
<th>Details on Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x30</td>
<td>RXSR</td>
<td>r</td>
<td></td>
<td>UPSECERR</td>
<td>BATIN</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000 0000</td>
<td>52</td>
</tr>
<tr>
<td>0x31</td>
<td>INTSTAT</td>
<td>SLPF</td>
<td>WAKEIF</td>
<td>HSYSTMRRIF</td>
<td>SECIF</td>
<td>RXIF</td>
<td>TXGIF</td>
<td>TXG1IF</td>
<td>TXNIF</td>
<td>0000 0000</td>
<td>53</td>
</tr>
<tr>
<td>0x32</td>
<td>INTCON</td>
<td>SLPIE</td>
<td>WAKEIE</td>
<td>HSYSTMRIE</td>
<td>SECIE</td>
<td>RXIE</td>
<td>TXG2IE</td>
<td>TXG1E</td>
<td>TXNIE</td>
<td>1111 1111</td>
<td>54</td>
</tr>
<tr>
<td>0x33</td>
<td>GPIO</td>
<td>r</td>
<td>r</td>
<td>GPI05</td>
<td>GPI04</td>
<td>GPI03</td>
<td>GPI02</td>
<td>GPI01</td>
<td>GPI00</td>
<td>0000 0000</td>
<td>55</td>
</tr>
<tr>
<td>0x34</td>
<td>TRISGPIO</td>
<td>r</td>
<td>r</td>
<td>TRISGp5</td>
<td>TRISGp4</td>
<td>TRISGp3</td>
<td>TRISGp2</td>
<td>TRISGp1</td>
<td>TRISGp0</td>
<td>0000 0000</td>
<td>55</td>
</tr>
<tr>
<td>0x35</td>
<td>SLPACK</td>
<td>SLPK</td>
<td>WAKECNT6</td>
<td>WAKECNT5</td>
<td>WAKECNT4</td>
<td>WAKECNT3</td>
<td>WAKECNT2</td>
<td>WAKECNT1</td>
<td>WAKECNT0</td>
<td>0000 0000</td>
<td>56</td>
</tr>
<tr>
<td>0x36</td>
<td>RFCTL</td>
<td>r</td>
<td></td>
<td></td>
<td>WAKECNT8</td>
<td>WAKECNT7</td>
<td>RFST</td>
<td>RFTXMODE</td>
<td>RFRXMODE</td>
<td>0000 0000</td>
<td>57</td>
</tr>
<tr>
<td>0x37</td>
<td>SSECOR2</td>
<td>UPEDEC</td>
<td>UPENC</td>
<td>TXG2CIPHER2</td>
<td>TXG2CIPHER1</td>
<td>TXG2CIPHER0</td>
<td>TXG1CIPHER2</td>
<td>TXG1CIPHER1</td>
<td>TXG1CIPHER0</td>
<td>0000 0000</td>
<td>58</td>
</tr>
<tr>
<td>0x38</td>
<td>BBREG0</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TURBO</td>
<td>59</td>
</tr>
<tr>
<td>0x39</td>
<td>BBREG1</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
<td>59</td>
</tr>
<tr>
<td>0x3A</td>
<td>BBREG2</td>
<td>CCA</td>
<td>CCA</td>
<td>CCASTH3</td>
<td>CCASTH2</td>
<td>CCASTH1</td>
<td>CCASTH0</td>
<td>0000 0000</td>
<td>0100 1000</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>0x3B</td>
<td>BBREG3</td>
<td>PRE</td>
<td>PRE</td>
<td>PREVALIDTH3</td>
<td>PREVALIDTH2</td>
<td>PREVALIDTH1</td>
<td>PREDETTH2</td>
<td>PREDETTH1</td>
<td>PREDETTH0</td>
<td>0000 0000</td>
<td>60</td>
</tr>
<tr>
<td>0x3C</td>
<td>BBREG4</td>
<td>CSTH</td>
<td>CSTH</td>
<td>CSTH2</td>
<td>CSTH1</td>
<td>CSTH0</td>
<td>PRECNT2</td>
<td>PRECNT1</td>
<td>PRECNT0</td>
<td>0000 0000</td>
<td>61</td>
</tr>
<tr>
<td>0x3D</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x3E</td>
<td>BBREG5</td>
<td>RSSI</td>
<td>RSSI</td>
<td>RSSIMODE1</td>
<td>RSSIMODE2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000 0000</td>
<td>61</td>
</tr>
<tr>
<td>0x3F</td>
<td>CCAEDTH</td>
<td>CCA</td>
<td>CCA</td>
<td>CCAEDTH7</td>
<td>CCAEDTH6</td>
<td>CCAEDTH5</td>
<td>CCAEDTH4</td>
<td>CCAEDTH3</td>
<td>CCAEDTH2</td>
<td>CCAEDTH1</td>
<td>CCAEDTH0</td>
</tr>
</tbody>
</table>

Legend:
- **r** = reserved

TABLE 2-7: LONG ADDRESS CONTROL REGISTER SUMMARY FOR MRF24J40

<table>
<thead>
<tr>
<th>Addr.</th>
<th>File Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR</th>
<th>Details on Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x20</td>
<td>RFCON0</td>
<td>CHANNEL3</td>
<td>CHANNEL2</td>
<td>CHANNEL1</td>
<td>CHANNEL0</td>
<td>RFOPT3</td>
<td>RFOPT2</td>
<td>RFOPT1</td>
<td>RFOPT0</td>
<td>0000 0000</td>
<td>63</td>
</tr>
<tr>
<td>0x21</td>
<td>RFCON1</td>
<td>VCOOPT7</td>
<td>VCOOPT6</td>
<td>VCOOPT5</td>
<td>VCOOPT4</td>
<td>VCOOPT3</td>
<td>VCOOPT2</td>
<td>VCOOPT1</td>
<td>VCOOPT0</td>
<td>0000 0000</td>
<td>63</td>
</tr>
<tr>
<td>0x22</td>
<td>FFCON2</td>
<td>PLLN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
<td>64</td>
</tr>
<tr>
<td>0x23</td>
<td>RFCON3</td>
<td>TXPWM1</td>
<td>TXPWM0</td>
<td>TXPWM2</td>
<td>TXPWM1</td>
<td>TXPWM0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000 0000</td>
<td>64</td>
</tr>
<tr>
<td>0x24</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x25</td>
<td>RFCON5</td>
<td>BATH3</td>
<td>BATH2</td>
<td>BATH1</td>
<td>BATH0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000 0000</td>
<td>65</td>
</tr>
<tr>
<td>0x26</td>
<td>RFCON6</td>
<td>TXFL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20MRECVR</td>
<td>BATEN</td>
<td>0000 0000</td>
</tr>
<tr>
<td>0x27</td>
<td>RFCON7</td>
<td>SLPCKSEL1</td>
<td>SLPCKSEL0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000 0000</td>
<td>66</td>
</tr>
<tr>
<td>0x28</td>
<td>RFCON8</td>
<td>r</td>
<td>r</td>
<td></td>
<td>RFVCO</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000 0000</td>
<td>66</td>
</tr>
<tr>
<td>0x29</td>
<td>SLPCAL0</td>
<td>SLPCAL7</td>
<td>SLPCAL6</td>
<td>SLPCAL5</td>
<td>SLPCAL4</td>
<td>SLPCAL3</td>
<td>SLPCAL2</td>
<td>SLPCAL1</td>
<td>SLPCAL0</td>
<td>0000 0000</td>
<td>67</td>
</tr>
<tr>
<td>0x2A</td>
<td>SLPCAL1</td>
<td>SLPCAL15</td>
<td>SLPCAL14</td>
<td>SLPCAL13</td>
<td>SLPCAL12</td>
<td>SLPCAL11</td>
<td>SLPCAL10</td>
<td>SLPCAL9</td>
<td>SLPCAL8</td>
<td>0000 0000</td>
<td>67</td>
</tr>
<tr>
<td>0x2B</td>
<td>SLPCAL2</td>
<td>SLPCAL19</td>
<td>SLPCAL18</td>
<td>SLPCAL17</td>
<td>SLPCAL16</td>
<td>SLPCAL15</td>
<td>SLPCAL14</td>
<td>SLPCAL13</td>
<td>SLPCAL12</td>
<td>0000 0000</td>
<td>68</td>
</tr>
<tr>
<td>0x2C</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x2D</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x2E</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x2F</td>
<td>RFSTATE</td>
<td>RFSTATE2</td>
<td>RFSTATE1</td>
<td>RFSTATE0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>0000 0000</td>
<td>69</td>
</tr>
<tr>
<td>0x30</td>
<td>RSSI</td>
<td>RSSI7</td>
<td>RSSI6</td>
<td>RSSI5</td>
<td>RSSI4</td>
<td>RSSI3</td>
<td>RSSI2</td>
<td>RSSI1</td>
<td>RSSI0</td>
<td>0000 0000</td>
<td>69</td>
</tr>
<tr>
<td>0x31</td>
<td>SLPCON0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>INEDGE</td>
<td>SUPCLKEN</td>
<td>0000 0000</td>
<td>70</td>
</tr>
<tr>
<td>0x32</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- **r** = reserved
TABLE 2-7: LONG ADDRESS CONTROL REGISTER SUMMARY FOR MRF24J40 (CONTINUED)

<table>
<thead>
<tr>
<th>Addr.</th>
<th>File Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR</th>
<th>Details on Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x213</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x214</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x215</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x216</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x217</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x218</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x219</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x21A</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x21B</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x21C</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x21D</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x21E</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x21F</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x220</td>
<td>SLPCON1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x221</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x222</td>
<td>WAKETIME1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x223</td>
<td>WAKETIME2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x224</td>
<td>REMONTR1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x225</td>
<td>REMONTR2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x226</td>
<td>MANNCT1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x227</td>
<td>MANNCT2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x228</td>
<td>MANNCT3</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x229</td>
<td>ASSOEADR0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x22A</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x22B</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x22C</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x22D</td>
<td>TESTMODE</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x22E</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x22F</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x230</td>
<td>ASSOEADR1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x231</td>
<td>ASSOEADR2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x232</td>
<td>ASSOEADR3</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x233</td>
<td>ASSOEADR4</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x234</td>
<td>ASSOEADR5</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x235</td>
<td>ASSOEADR6</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x236</td>
<td>ASSOEADR7</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x237</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x238</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x239</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x23A</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x23B</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x23C</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x23D</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x23E</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
<tr>
<td>0x23F</td>
<td>Reserved</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>000 0000</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- **r** = reserved
TABLE 2-7: LONG ADDRESS CONTROL REGISTER SUMMARY FOR MRF24J40 (CONTINUED)

<table>
<thead>
<tr>
<th>Addr.</th>
<th>File Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Value on POR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x246</td>
<td>UPNONCE6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
</tr>
<tr>
<td>0x247</td>
<td>UPNONCE7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
</tr>
<tr>
<td>0x248</td>
<td>UPNONCE8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
</tr>
<tr>
<td>0x249</td>
<td>UPNONCE9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
</tr>
<tr>
<td>0x24A</td>
<td>UPNONCE10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
</tr>
<tr>
<td>0x24B</td>
<td>UPNONCE11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
</tr>
<tr>
<td>0x24C</td>
<td>UPNONCE12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0000 0000</td>
</tr>
</tbody>
</table>

Legend: *r* = reserved

Downloaded from Arrow.com.
2.15.3 SHORT ADDRESS CONTROL

REGISTERS DETAIL

REGISTER 2-1: RXMCR: RECEIVE MAC CONTROL REGISTER (ADDRESS: 0x00)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>PANCOORD</td>
<td>COORD</td>
<td>ERRPKT</td>
<td>PROMI</td>
</tr>
</tbody>
</table>

Legend:

- **r** = reserved
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

- **bit 7-6** Reserved: Maintain as '0'
- **bit 5** NOACKRSP: Automatic Acknowledgement Response bit
 - 1 = Disables automatic Acknowledgement response
 - 0 = Enables automatic Acknowledgement response. Acknowledgements are returned when they are requested (default).
- **bit 4** Reserved: Maintain as '0'
- **bit 3** PANCOORD: PAN Coordinator bit
 - 1 = Set device as PAN coordinator
 - 0 = Device is not set as PAN coordinator (default)
- **bit 2** COORD: Coordinator bit
 - 1 = Set device as coordinator
 - 0 = Device is not set as coordinator (default)
- **bit 1** ERRPKT: Packet Error Mode bit
 - 1 = Accept all packets including those with CRC error
 - 0 = Accept only packets with good CRC (default)
- **bit 0** PROMI: Promiscuous Mode bit
 - 1 = Receive all packet types with good CRC
 - 0 = Discard packet when there is a MAC address mismatch, illegal frame type, dPAN/sPAN or MAC short address mismatch (default)
REGISTER 2-2: PANIDL: PAN ID LOW BYTE REGISTER (ADDRESS: 0x01)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAN ID Low Byte (PANIDL<7:0>)

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 0</th>
</tr>
</thead>
</table>

Legend:*
R = Readable bit
W = Writeable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

REGISTER 2-3: PANIDH: PAN ID HIGH BYTE REGISTER (ADDRESS: 0x02)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAN ID High Byte (PANIDH<15:8>)

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 0</th>
</tr>
</thead>
</table>

Legend:*
R = Readable bit
W = Writeable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

PANIDL<7:0>: PAN ID Low Byte bits

PANIDH<15:8>: PAN ID High Byte bits
REGISTER 2-4: SADRL: SHORT ADDRESS LOW BYTE REGISTER (ADDRESS: 0x03)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
</tbody>
</table>

Short Address Low Byte (SADRL<7:0>)

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- `'1' = Bit is set`
- `'0' = Bit is cleared`
- **x** = Bit is unknown

bit 7-0 **SADRL<7:0>:** Short Address Low Byte bits

REGISTER 2-5: SADRH: SHORT ADDRESS HIGH BYTE REGISTER (ADDRESS: 0x04)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
</tbody>
</table>

Short Address High Byte (SADRH<15:8>)

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- `'1' = Bit is set`
- `'0' = Bit is cleared`
- **x** = Bit is unknown

bit 7-0 **SADRH<15:8>:** Short Address High Byte bits
REGISTER 2-6: EADR0: EXTENDED ADDRESS 0 REGISTER (ADDRESS: 0x05)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 7-0
EADR<7:0>: 64-Bit Extended Address bits

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- ‘-n’ = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - **x** = Bit is unknown

REGISTER 2-7: EADR1: EXTENDED ADDRESS 1 REGISTER (ADDRESS: 0x06)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 7-0
EADR<15:8>: 64-Bit Extended Address bits

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- ‘-n’ = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - **x** = Bit is unknown

REGISTER 2-8: EADR2: EXTENDED ADDRESS 2 REGISTER (ADDRESS: 0x07)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 7-0
EADR<23:16>: 64-Bit Extended Address bits

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- ‘-n’ = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - **x** = Bit is unknown
REGISTER 2-9: EADR3: EXTENDED ADDRESS 3 REGISTER (ADDRESS: 0x08)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
</tbody>
</table>

64-Bit Extended Address bits (EADR<31:24>)

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- n = Value at POR
 - '1' = Bit is set
 - '0' = Bit is cleared
 - x = Bit is unknown

bit 7-0

EADR<31:24>: 64-Bit Extended Address bits

REGISTER 2-10: EADR4: EXTENDED ADDRESS 4 REGISTER (ADDRESS: 0x09)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
</tbody>
</table>

64-Bit Extended Address bits (EADR<39:32>)

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- n = Value at POR
 - '1' = Bit is set
 - '0' = Bit is cleared
 - x = Bit is unknown

bit 7-0

EADR<39:32>: 64-Bit Extended Address bits

REGISTER 2-11: EADR5: EXTENDED ADDRESS 5 REGISTER (ADDRESS: 0x0A)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
</tbody>
</table>

64-Bit Extended Address bits (EADR<47:40>)

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- n = Value at POR
 - '1' = Bit is set
 - '0' = Bit is cleared
 - x = Bit is unknown

bit 7-0

EADR<47:40>: 64-Bit Extended Address bits
REGISTER 2-12: EADR6: EXTENDED ADDRESS 6 REGISTER (ADDRESS: 0x0B)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-Bit Extended Address bits (EADR<55:48>)

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0 **EADR<55:48>:** 64-Bit Extended Address bits

REGISTER 2-13: EADR7: EXTENDED ADDRESS 7 REGISTER (ADDRESS: 0x0C)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-Bit Extended Address bits (EADR<63:56>)

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0 **EADR<63:56>:** 64-Bit Extended Address bits
REGISTER 2-14: RXFLUSH: RECEIVE FIFO FLUSH REGISTER (ADDRESS: 0x0D)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
<td>Maintain as ‘0’</td>
</tr>
<tr>
<td>6</td>
<td>WAKEPOL</td>
<td>Wake Signal Polarity bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Wake signal polarity is active-high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Wake signal polarity is active-low (default)</td>
</tr>
<tr>
<td>5</td>
<td>WAKEPAD</td>
<td>Wake I/O Pin Enable bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Enable wake I/O pin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Disable wake I/O pin (default)</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>Maintain as ‘0’</td>
</tr>
<tr>
<td>3</td>
<td>CMDONLY</td>
<td>Command Frame Receive bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Only command frames are received, all other frames are filtered out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = All valid frames are received (default)</td>
</tr>
<tr>
<td>2</td>
<td>DATAONLY</td>
<td>Data Frame Receive bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Only data frames are received, all other frames are filtered out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = All valid frames are received (default)</td>
</tr>
<tr>
<td>1</td>
<td>BCNONLY</td>
<td>Beacon Frame Receive bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Only beacon frames are received, all other frames are filtered out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = All valid frames are received (default)</td>
</tr>
<tr>
<td>0</td>
<td>RXFLUSH</td>
<td>Reset Receive FIFO Address Pointer bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Resets the RXFIFO Address Pointer to zero. RXFIFO data is not modified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit is automatically cleared to ‘0’ by hardware.</td>
</tr>
</tbody>
</table>

Legend:
- **r** = reserved
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- -n = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown
REGISTER 2-15: ORDER: BEACON AND SUPERFRAME ORDER REGISTER (ADDRESS: 0x10)

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
BO3(1) BO2(1) BO1(1) BO0(1) SO3(1) SO2(1) SO1(1) SO0(1)

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-4
BO<3:0>: Beacon Order bits (macBeaconOrder)(1)
Specifies how often the coordinator will transmit a beacon. (2)
1111 = The coordinator will not transmit a beacon and the Superframe Order (SO) parameter value is ignored (default)
1110 = 14
1100 =
1000 =
0000 = 0

bit 3-0
SO<3:0>: Superframe Order bits (macSuperframeOrder)(1)
Specifies the length of the active portion of the superframe, including the beacon frame. (2)
1111 = The superframe will not be active following the beacon (i.e., no active portion in the superframe (default))
1110 = 14
1100 =
1000 =
0000 = 0

Note 1: Refer to IEEE 802.15.4™-2003 Standard, Section 7.5.1.1 “Superframe Structure”.
2: PANs that wish to use the superframe structure shall set macBeaconOrder to a value between 0 and 14 and macSuperframeOrder to a value between 0 and the value of macBeaconOrder (i.e., 0 ≤ SO ≤ BO ≤ 14).
REGISTER 2-16: TXMCR: CSMA-CA MODE CONTROL REGISTER (ADDRESS: 0x11)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOCSMA</td>
<td>BATLIFEXT</td>
<td>SLOTTED</td>
<td>MACMINBE1</td>
<td>MACMINBE0</td>
<td>CSMABF2</td>
<td>CSMABF1</td>
<td>CSMABF0</td>
</tr>
</tbody>
</table>

bit 7 NOCSMA: No Carrier Sense Multiple Access (CSMA) Algorithm bits

1 = Disable CSMA-CA algorithm when transmitting in Unslotted mode with GTSSWITCH (TXPEND 0x21<1>) bit set
0 = Enable CSMA-CA algorithm when transmitting in Unslotted mode with GTSSWITCH (TXPEND 0x21<1>) bit set (default)

bit 6 BATLIFEXT: Battery Life Extension Mode bit (macBattLifeExt)

1 = Enable
0 = Disable (default)

bit 5 SLOTTED: Slotted CSMA-CA Mode bit

1 = Enable Slotted CSMA-CA mode
0 = Disable Slotted CSMA-CA mode (default)

bit 4-3 MACMINBE<1:0>: MAC Minimum Backoff Exponent bits (macMinBE)

The minimum value of the backoff exponent in the CSMA-CA algorithm. Note that if this value is set to '0', collision avoidance is disabled.\(^{(1)}\)

Default: 0x3.

bit 2-0 CSMABF<2:0>: CSMA Backoff bits (macMaxCSMABackoff)

The maximum number of backoffs the CSMA-CA algorithm will attempt before declaring a channel access failure.\(^{(1)}\)

111 = Undefined
110 = Undefined
101 = 5
100 = 4 (default)
011 = 3
010 = 2
001 = 1
000 = 0

Note 1: Refer to IEEE 802.15.4™-2003 Standard, Table 71 – MAC PIB attributes.
REGISTER 2-17: ACKTMOUT: MAC ACK TIME-OUT DURATION REGISTER (ADDRESS: 0x12)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRPACK</td>
<td>MAWD6(^{(1)})</td>
<td>MAWD5(^{(1)})</td>
<td>MAWD4(^{(1)})</td>
<td>MAWD3(^{(1)})</td>
<td>MAWD2(^{(1)})</td>
<td>MAWD1(^{(1)})</td>
<td>MAWD0(^{(1)})</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7
DRPACK: Data Request Pending Acknowledgement bit\(^{(1)}\)
Sets or clears the frame pending bit in the Acknowledgement frame for a received data request MAC command.
1 = Sets frame pending bit
0 = Clears frame pending bit

bit 6-0
MAWD<6:0>: macAckWaitDuration bits\(^{(2)}\)
The maximum number of symbols to wait for an Acknowledgment frame to arrive following a transmitted data or MAC command frame. Units: Symbol period (16 μs). Default value: 0x39.

Note 1: Refer to IEEE 802.15.4™-2003 Standard, Section 5.4.2.2 “Data Transfer from a Coordinator” and Section 7.3 “MAC Command Frames”.

Note 2: Refer to IEEE 802.15.4™-2003 Standard, Table 71: MAC PIB Attributes.
REGISTER 2-18: ESLOTG1: GTS1 AND CAP END SLOT REGISTER (ADDRESS: 0x13)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTS1-3</td>
<td>GTS1-2</td>
<td>GTS1-1</td>
<td>GTS1-0</td>
<td>CAP3</td>
<td>CAP2</td>
<td>CAP1</td>
<td>CAP0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

<table>
<thead>
<tr>
<th>bit 7-4</th>
<th>GTS1<-3:0>: End Slot of 1st GTS bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1111 = 15</td>
</tr>
<tr>
<td></td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>0000 = 0 (default)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 3-0</th>
<th>CAP<3:0>: Contention Access Period (CAP) End Slot bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1111 = 15</td>
</tr>
<tr>
<td></td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>0000 = 0 (default)</td>
</tr>
</tbody>
</table>
REGISTER 2-19: SYMTICKL: SYMBOL PERIOD TICK LOW BYTE REGISTER (ADDRESS: 0x14)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICKP7</td>
<td>TICKP6</td>
<td>TICKP5</td>
<td>TICKP4</td>
<td>TICKP3</td>
<td>TICKP2</td>
<td>TICKP1</td>
<td>TICKP0</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 TICKP<7:0>: Symbol Period Tick bits
Number of ticks to define a symbol period. Tick period is based on the system clock frequency of
20 MHz. TICKP is a 9-bit value. The TICKP8 bit is located in SYMTICKH<0>.
Units: tick (50 ns). Default value = 0x140 (320 * 50 ns = 16 μs).

REGISTER 2-20: SYMTICKH: SYMBOL PERIOD TICK HIGH BYTE REGISTER (ADDRESS: 0x15)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXONT6</td>
<td>TXONT5</td>
<td>TXONT4</td>
<td>TXONT3</td>
<td>TXONT2</td>
<td>TXONT1</td>
<td>TXONT0</td>
<td>TICKP8</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-1 TXONT<6:0>: Transmitter Enable On Time Tick bits
Transmitter on time before beginning of packet. TXONT is a 9-bit value. The TXONT<8:7> bits are
located in PACON2<1:0>. Units: tick (50 ns). Default value = 0x028 (40 * 50 ns = 2 μs).

bit 0 TICKP8: Symbol Period Tick bit
Number of ticks to define a symbol period. Tick period is based on the system clock frequency of
20 MHz. TICKP is a 9-bit value. The TICKP<7:0> bits are located in SYMTICKL<7:0>.
Units: tick (50 ns). Default value = 0x140 (320 * 50 ns = 16 μs).

Note 1: Refer to Figure 4-4 for timing diagram.
REGISTER 2-21: PACON0: POWER AMPLIFIER CONTROL 0 REGISTER (ADDRESS: 0x16)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAONT7(1)</td>
<td>PAONT6(1)</td>
<td>PAONT5(1)</td>
<td>PAONT4(1)</td>
<td>PAONT3(1)</td>
<td>PAONT2(1)</td>
<td>PAONT1(1)</td>
<td>PAONT0(1)</td>
</tr>
</tbody>
</table>

bit 7-0 **PAONT<7:0>:** Power Amplifier Enable On Time Tick bits(1)
Power amplifier on time before beginning of packet. PAONT is a 9-bit value. The PAONT8 bit is located in PACON1<0>. Units: tick (50 ns). Default value = 0x029 (41 * 50 ns = 2.05 μs).

Note 1: Refer to Figure 4-4 for timing diagram.

REGISTER 2-22: PACON1: POWER AMPLIFIER CONTROL 1 REGISTER (ADDRESS: 0x17)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>r</td>
<td>PAONTS3(1)</td>
<td>PAONTS2(1)</td>
<td>PAONTS1(1)</td>
<td>PAONTS0(1)</td>
<td>PAONT8(1)</td>
</tr>
</tbody>
</table>

bit 7-5 **Reserved:** Maintain as ‘0’

bit 4-1 **PAONTS<3:0>:** Power Amplifier Enable On Time Symbol bits(1)
Power amplifier on time before beginning of packet. Units: symbol period (16 μs). Minimum value: 0x1 (default) (1 * 16 μs = 16 μs).

bit 0 **PAONT8:** Power Amplifier Enable On Time Tick bit(1)
Power amplifier on time before beginning of packet. PAONT is a 9-bit value. The PAONT<7:0> bits are located in PACON0<7:0>. Units: tick (50 ns). Default value = 0x029 (41 * 50 ns = 2.05 μs).

Note 1: Refer to Figure 4-4 for timing diagram.
REGISTER 2-23: PACON2: POWER AMPLIFIER CONTROL 2 REGISTER (ADDRESS: 0x18)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6-2</th>
<th>Bit 1-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFOEN</td>
<td>TXONTS<3:0></td>
<td>TXONT<8:7></td>
</tr>
</tbody>
</table>

Legend:
- r = reserved
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

- **FIFOEN**: FIFO Enable bit
 - 1 = Enabled (default). Always maintain this bit as a ‘1’.

- **Reserved**: Maintain as ‘0’

- **TXONTS<3:0>**: Transmitter Enable On Time Symbol bits⁽¹⁾
 - Transmitter on time before beginning of packet. Units: symbol period (16 μs).
 - Minimum value: 0x1. Default value: 0x2 (2 * 16 μs = 32 μs). Recommended value: 0x6 (6 * 16 μs = 96 μs).

- **TXONT<8:7>**: Transmitter Enable On Time Tick bits⁽¹⁾
 - Transmitter on time before beginning of packet. TXONT is a 9-bit value. TXONT<6:0> bits are located in SYMTICKH<7:1>. Units: tick (50 ns). Default value = 0x028 (40 * 50 ns = 2 μs).

Note 1: Refer to Figure 4-4 for timing diagram.
REGISTER 2-24: TXBCON0: TRANSMIT BEACON FIFO CONTROL 0 REGISTER (ADDRESS: 0x1A)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved: Maintain as ‘0’</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TXBSECEN: TX Beacon FIFO Security Enabled bit</td>
<td>0</td>
<td>Security disabled (default)</td>
</tr>
<tr>
<td>0</td>
<td>TXBTRIG: Transmit Frame in TX Beacon FIFO bit</td>
<td>1</td>
<td>Transmit the frame in the TX Beacon FIFO; bit is automatically cleared by hardware</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown
REGISTER 2-25: TXNCON: TRANSMIT NORMAL FIFO CONTROL REGISTER (ADDRESS: 0x1B)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-5</td>
<td>Reserved</td>
<td>Maintain as ‘0’</td>
</tr>
<tr>
<td>4</td>
<td>FPSTAT</td>
<td>Frame Pending Status bit<sup>(1)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status of the frame pending bit in the received Acknowledgement frame.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Sets frame pending bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Clears frame pending bit</td>
</tr>
<tr>
<td>3</td>
<td>INDIRECT</td>
<td>Activate Indirect Transmission bit (coordinator only)<sup>(4)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Indirect transmission enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Indirect transmission disabled (default)</td>
</tr>
<tr>
<td>2</td>
<td>TXNACKREQ</td>
<td>TX Normal FIFO Acknowledgement Request bit<sup>(2,4)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmit a frame with Acknowledgement frame expected. If Acknowledgement is not received, retransmit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Acknowledgement requested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = No Acknowledgement requested (default)</td>
</tr>
<tr>
<td>1</td>
<td>TXNSECEN</td>
<td>TX Normal FIFO Security Enabled bit<sup>(3,4)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Security enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Security disabled (default)</td>
</tr>
<tr>
<td>0</td>
<td>TXNTRIG</td>
<td>Transmit Frame in TX Normal FIFO bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Transmit the frame in the TX Normal FIFO; bit is automatically cleared by hardware</td>
</tr>
</tbody>
</table>

Legend:
- `r` = reserved
- `R` = Readable bit
- `W` = Writable bit
- `U` = Unimplemented bit, read as ‘0’
- `-n` = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- `x` = Bit is unknown

Note
1. Refer to IEEE 802.15.4™-2003 Standard, Section 7.2.1.1.3 “Frame Pending Subfield”.
2. Refer to IEEE 802.15.4-2003 Standard, Section 7.2.1.1.4 “Acknowledgement Request Subfield”.
3. Refer to IEEE 802.15.4-2003 Standard, Section 7.2.1.1.2 “Security Enabled Subfield”.
4. Bit is cleared at the next triggering of TXN FIFO.
REGISTER 2-26: TXG1CON: GTS1 FIFO CONTROL REGISTER (ADDRESS: 0x1C)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXG1RETRY1</td>
<td>TXG1RETRY0</td>
<td>TXG1SLOT2</td>
<td>TXG1SLOT1</td>
<td>TXG1SLOT0</td>
<td>TXG1ACKREQ</td>
<td>TXG1SECEN</td>
<td>TXG1TRIG</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-6
TXG1RETRY<1:0>: TX GTS1 FIFO Retry Times bits
- **Write:** retry times of packet
- **Read:** number of retry times of the successfully transmitted packet

bit 5-3
TXG1SLOT<2:0>: GTS Slot that TX GTS1 FIFO Occupies bits

bit 2
TXG1ACKREQ: TX GTS1 FIFO Acknowledgement Request bit
- Transmit a frame with Acknowledgement frame expected. If Acknowledgement is not received, retransmit.
 1 = Acknowledgement requested
 0 = No Acknowledgement requested (default)

bit 1
TXG1SECEN: TX GTS1 FIFO Security Enabled bit
- 1 = Security enabled
- 0 = Security disabled (default)

bit 0
TXG1TRIG: Transmit Frame in TX GTS1 FIFO bit
- 1 = Transmit the frame in the TX GTS1 FIFO; bit is automatically cleared by hardware

REGISTER 2-27: TXG2CON: GTS2 FIFO CONTROL REGISTER (ADDRESS: 0x1D)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXG2RETRY1</td>
<td>TXG2RETRY0</td>
<td>TXG2SLOT2</td>
<td>TXG2SLOT1</td>
<td>TXG2SLOT0</td>
<td>TXG2ACKREQ</td>
<td>TXG2SECEN</td>
<td>TXG2TRIG</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-6
TXG2RETRY<1:0>: TX GTS2 FIFO Retry Times bits
- **Write:** retry times of packet
- **Read:** number of retry times of the successfully transmitted packet

bit 5-3
TXG2SLOT<2:0>: GTS Slot that TX GTS2 FIFO Occupies bits

bit 2
TXG2ACKREQ: TX GTS2 FIFO Acknowledgement Request bit
- Transmit a frame with Acknowledgement frame expected. If Acknowledgement is not received, retransmit.
 1 = Acknowledgement requested
 0 = No Acknowledgement requested (default)

bit 1
TXG2SECEN: TX GTS2 FIFO Security Enabled bit
- 1 = Security enabled
- 0 = Security disabled (default)

bit 0
TXG2TRIG: Transmit Frame in TX GTS2 FIFO bit
- 1 = Transmit the frame in the TX GTS2 FIFO; bit is automatically cleared by hardware
REGISTER 2-28:
ESLOTG23: END SLOT OF GTS3 AND GTS2 REGISTER (ADDRESS: 0x1E)

<table>
<thead>
<tr>
<th>Bit 7-4</th>
<th>Bit 3-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTS3-3</td>
<td>GTS3-2</td>
</tr>
<tr>
<td>GTS3-2</td>
<td>GTS3-1</td>
</tr>
<tr>
<td>GTS3-1</td>
<td>GTS3-0</td>
</tr>
<tr>
<td>GTS3-0</td>
<td>GTS2-3</td>
</tr>
<tr>
<td>GTS2-2</td>
<td>GTS2-1</td>
</tr>
<tr>
<td>GTS2-1</td>
<td>GTS2-0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

- **bit 7-4**: GTS3-<3:0>: End Slot of 3rd GTS bits
- **bit 3-0**: GTS2-<3:0>: End Slot of 2nd GTS bits

REGISTER 2-29:
ESLOTG45: END SLOT OF GTS5 AND GTS4 REGISTER (ADDRESS: 0x1F)

<table>
<thead>
<tr>
<th>Bit 7-4</th>
<th>Bit 3-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTS5-3</td>
<td>GTS5-2</td>
</tr>
<tr>
<td>GTS5-2</td>
<td>GTS5-1</td>
</tr>
<tr>
<td>GTS5-1</td>
<td>GTS5-0</td>
</tr>
<tr>
<td>GTS5-0</td>
<td>GTS4-3</td>
</tr>
<tr>
<td>GTS4-2</td>
<td>GTS4-1</td>
</tr>
<tr>
<td>GTS4-1</td>
<td>GTS4-0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

- **bit 7-4**: GTS5-<3:0>: End Slot of 5th GTS bits
- **bit 3-0**: GTS4-<3:0>: End Slot of 4th GTS bits

REGISTER 2-30:
ESLOTG67: END SLOT OF GTS6 REGISTER (ADDRESS: 0x20)

<table>
<thead>
<tr>
<th>Bit 7-4</th>
<th>Bit 3-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>r</td>
<td>GTS6-3</td>
</tr>
<tr>
<td>GTS6-2</td>
<td>GTS6-1</td>
</tr>
<tr>
<td>GTS6-0</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- r = reserved
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

- **bit 7-4**: Reserved: Maintain as ‘0’
- **bit 3-0**: GTS6-<3:0>: End Slot of 6th GTS bits
 - If 7th GTS exists, the end slot must be 15.
REGISTER 2-31: TXPEND: TX DATA PENDING REGISTER (ADDRESS: 0x21)

<table>
<thead>
<tr>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>bit 7</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLIFS5</td>
<td>MLIFS4</td>
<td>MLIFS3</td>
<td>MLIFS2</td>
<td>MLIFS1</td>
<td>MLIFS0</td>
<td>GTSSWITCH</td>
<td>FPACK<sup>(1)</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7-2 **MLIFS<5:0>:** Minimum Long Interframe Spacing bits
The minimum number of symbols forming a Long Interframe Spacing (LIFS) period. Refer to IEEE 802.15.4™-2003 Standard, Section 7.5.1.2 “IFS” and Table 70: MAC Sublayer Constants. MLIFS + RFSTBL = aMinLIPSPeriod = 40 symbols. Units: symbol period (16 μs). Default value: 0x21. Recommended values: MLIFS = 0x1F and RFSTBL = 0x9.

bit 1 **GTSSWITCH:** Continue TX GTS FIFO Switch in CFP bit
- 1 = GTS1 and GTS2 FIFO will toggle with each other during CFP
- 0 = GTS1 and GTS2 FIFO will stop toggling with each other if the transmission fails (default)

bit 0 **FPACK:** Frame Pending bit in the Acknowledgement Frame bit⁽¹⁾
Sets or clears the frame pending bit in the Acknowledgement frame.
- 1 = Sets frame pending bit
- 0 = Clears frame pending bit

Note 1:
Refer to IEEE 802.15.4™-2003 Standard, Section 7.2.1.1.3 “Frame Pending Subfield” and Section 7.2.2.3.1 “Acknowledgement Frame MHR Fields”.

⁽¹⁾ Indicates a note or additional information related to the specific bit.
REGISTER 2-32: WAKECON: WAKE CONTROL REGISTER (ADDRESS: 0x22)

<table>
<thead>
<tr>
<th></th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMMWAKE</td>
<td>REGWAKE</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
</tr>
</tbody>
</table>

Legend:
- r = reserved
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>IMMWAKE: Immediate Wake-up Mode Enable bit</td>
<td>1 = Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wake-up mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wake-up mode</td>
</tr>
<tr>
<td>6</td>
<td>REGWAKE: Register Wake-up Signal bit</td>
<td>Host processor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>should set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to ‘1’, then</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clear to ‘0’,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to perform</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wake-up.</td>
</tr>
<tr>
<td>5-0</td>
<td>INTL<5:0>: Interval to Start Beacon(1)</td>
<td>For Beacon-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enabled mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the timing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>between</td>
</tr>
<tr>
<td></td>
<td></td>
<td>triggering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slotted mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and the first</td>
</tr>
<tr>
<td></td>
<td></td>
<td>time to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transmit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>beacon.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default Value:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x00.</td>
</tr>
</tbody>
</table>

Note 1: Refer to Section 3.8.1.4 “Configuring Beacon-Enabled PAN Coordinator” for more information.
REGISTER 2-33: FRMOFFSET: SUPERFRAME COUNTER OFFSET TO ALIGN BEACON REGISTER (ADDRESS: 0x23)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET7⁽¹⁾</td>
<td>OFFSET6⁽¹⁾</td>
<td>OFFSET5⁽¹⁾</td>
<td>OFFSET4⁽¹⁾</td>
<td>OFFSET3⁽¹⁾</td>
<td>OFFSET2⁽¹⁾</td>
<td>OFFSET1⁽¹⁾</td>
<td>OFFSET0⁽¹⁾</td>
</tr>
</tbody>
</table>

bit 7-0 OFFSET<7:0>: Superframe Counter Offset for Align Air Slot Boundary bits⁽¹⁾
For Beacon-Enabled mode device. Default value: 0x00. Recommended value: 0x15.

Note 1: Refer to Section 3.8.1.6 “Configuring Beacon-Enabled Device” for more information.

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown
REGISTER 2-34: TXSTAT: TX MAC STATUS REGISTER (ADDRESS: 0x24)

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXNRETRY1</td>
<td>TXNRETRY0</td>
<td>CCAFAIL</td>
<td>TXG2FNT</td>
<td>TXG1FNT</td>
<td>TXG2STAT</td>
<td>TXG1STAT</td>
<td>TXNSTAT</td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

- **bit 7-6**: TXNRETRY<1:0>: TX Normal FIFO Retry Times bits
 Number of retries of the most recent TX Normal FIFO transmission.
- **bit 5**: CCAFAIL: Clear Channel Assessment (CCA) Status of Last Transmission bit
 - 1 = Channel busy
 - 0 = Channel Idle
- **bit 4**: TXG2FNT: TX GTS2 FIFO Transmission failed due to not enough time before the end of GTS bit
 - 1 = Failed
 - 0 = Succeeded
- **bit 3**: TXG1FNT: TX GTS1 FIFO Transmission failed due to not enough time before the end of GTS bit
 - 1 = Failed
 - 0 = Succeeded
- **bit 2**: TXG2STAT: TX GTS2 FIFO Release Status bit
 - 1 = Failed, retry count exceeded
 - 0 = Succeeded
- **bit 1**: TXG1STAT: TX GTS2 FIFO Release Status bit
 - 1 = Failed, retry count exceeded
 - 0 = Succeeded
- **bit 0**: TXNSTAT: TX Normal FIFO Release Status bit
 - 1 = Failed, retry count exceeded
 - 0 = Succeeded
REGISTER 2-35: TXBCON1: TRANSMIT BEACON CONTROL 1 REGISTER (ADDRESS: 0x25)

<table>
<thead>
<tr>
<th>Bit</th>
<th>TXBMSK: TX Beacon FIFO Interrupt Mask bit</th>
<th>WU/BCN: Wake-up/Beacon Interrupt Status bit</th>
<th>RSSINU<1:0>: RSSI Average Symbols bits</th>
<th>Reserved: Maintain as '0'</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1 = TX Beacon FIFO interrupt is masked</td>
<td>Indicates if the WAKEIF interrupt was due to beacon start or wake-up.</td>
<td>11 = 8 symbols (default)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 = TX Beacon FIFO interrupt is not masked (default)</td>
<td>1 = Beacon start interrupt</td>
<td>10 = 4 symbols</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Wake-up interrupt</td>
<td>01 = 2 symbols</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00 = 1 symbol</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- '-' = Value at POR
- '1' = Bit is set
- '0' = Bit is cleared
- x = Bit is unknown

bit 7 TXBMSK: TX Beacon FIFO Interrupt Mask bit
 1 = TX Beacon FIFO interrupt is masked
 0 = TX Beacon FIFO interrupt is not masked (default)

bit 6 WU/BCN: Wake-up/Beacon Interrupt Status bit
 Indicates if the WAKEIF interrupt was due to beacon start or wake-up.
 1 = Beacon start interrupt
 0 = Wake-up interrupt

bit 5-4 RSSINUM<1:0>: RSSI Average Symbols bits
 11 = 8 symbols (default)
 10 = 4 symbols
 01 = 2 symbols
 00 = 1 symbol
REGISTER 2-36: GATECLK: GATED CLOCK CONTROL REGISTER (ADDRESS: 0x26)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value at POR</th>
<th>Default State</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-4</td>
<td>Reserved: Maintain as ‘0’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GTSON: GTS FIFO Clock Enable</td>
<td></td>
<td>‘0’ = Disabled (default)</td>
</tr>
<tr>
<td>2-0</td>
<td>Reserved: Maintain as ‘0’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

© 2010 Microchip Technology Inc. Preliminary
REGISTER 2-37: TXTIME: TX TURNAROUND TIME REGISTER (ADDRESS: 0x27)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURNTIME3</td>
<td>TURNTIME2</td>
<td>TURNTIME1</td>
<td>TURNTIME0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
- \(r \) = reserved
- \(R \) = Readable bit
- \(W \) = Writable bit
- \(U \) = Unimplemented bit, read as ‘0’
- \(-n \) = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- \(x \) = Bit is unknown

bit 7-4 \(\text{TURNTIME}<3:0> \): Turnaround Time bits
Transmission to reception and reception to transmission turnaround time. Refer to IEEE 802.15.4™-2003 Standard, Table 18: PHY Constants and Section 7.5.6.4.2 "Acknowledgment".
\(\text{TURNTIME} + \text{RFSTBL} = \text{aTurnaroundTime} = 12 \text{ symbols} \).
Units: symbol period (16 \(\mu s \)). Default value: 0x4. Minimum value: 0x2.
Recommended values: TURNTIME = 0x3 and RFSTBL = 0x9.

bit 3-0 \(\text{Reserved} \): Maintain as 0x8
REGISTER 2-38: HSYMTMR: HALF SYMBOL TIMER LOW BYTE REGISTER (ADDRESS: 0x28)

Bit 7-0	Description	Units
HSYMTMR<7:0>: Half Symbol Timer Low Byte bits	8 μs.	

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- ‘-n’ = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- ‘x’ = Bit is unknown

REGISTER 2-39: HSYMTMRH: HALF SYMBOL TIMER HIGH BYTE REGISTER (ADDRESS: 0x29)

Bit 7-0	Description	Units
HSYMTMR<15:8>: Half Symbol Timer High Byte bits	8 μs.	

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- ‘-n’ = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- ‘x’ = Bit is unknown
REGISTER 2-40: SOFTRST: SOFTWARE RESET REGISTER (ADDRESS: 0x2A)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RSTPWR</td>
<td>RSTBB</td>
<td>RSTMAC</td>
</tr>
</tbody>
</table>

Legend:
- `r` = reserved
- `R` = Readable bit
- `W` = Writable bit
- `U` = Unimplemented bit, read as '0'
- `-n` = Value at POR
- '1' = Bit is set
- '0' = Bit is cleared
- `x` = Bit is unknown

bit 7-3 **Reserved**: Maintain as '0'
bite 2 **RSTPWR**: Power Management Reset bit

- 1 = Reset power management circuitry (bit is automatically cleared to '0' by hardware)
bite 1 **RSTBB**: Baseband Reset bit

- 1 = Reset baseband circuitry (bit is automatically cleared to '0' by hardware)
bite 0 **RSTMAC**: MAC Reset bit

- 1 = Reset MAC circuitry (bit is automatically cleared to '0' by hardware)
REGISTER 2-41: SECCON0: SECURITY CONTROL 0 REGISTER (ADDRESS: 0x2C)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SECIGNORE: RX Security Decryption Ignore bit</td>
<td>≤ 1 = Ignore decryption process</td>
</tr>
<tr>
<td>6</td>
<td>SECSTART: RX Security Decryption Start bit</td>
<td>≤ 1 = Start decryption process</td>
</tr>
<tr>
<td>5-3</td>
<td>RXCIPHER<2:0>: RX FIFO Security Suite Select bits</td>
<td>111 = AES-CBC-MAC-32, 110 = AES-CBC-MAC-64, 101 = AES-CBC-MAC-128, 100 = AES-CCM-32, 011 = AES-CCM-64, 010 = AES-CCM-128, 001 = AES-CTR, 000 = None (default)</td>
</tr>
<tr>
<td>2-0</td>
<td>TXNCIPHER<2:0>: TX Normal FIFO Security Suite Select bits</td>
<td>111 = AES-CBC-MAC-32, 110 = AES-CBC-MAC-64, 101 = AES-CBC-MAC-128, 100 = AES-CCM-32, 011 = AES-CCM-64, 010 = AES-CCM-128, 001 = AES-CTR, 000 = None (default)</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as '0'
-n = Value at POR
'1' = Bit is set
'0' = Bit is cleared
x = Bit is unknown
REGISTER 2-42: SECCON1: SECURITY CONTROL 1 REGISTER (ADDRESS: 0x2D)

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6-4</th>
<th>Bit 3-2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>TXBCIPHER2</td>
<td>TXBCIPHER1</td>
<td>TXBCIPHER0</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
- **r** = reserved
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - **x** = Bit is unknown

bit 7
- **Reserved**: Read as ‘0’

bit 6-4
- **TXBCIPHER<2:0>**: TX Beacon FIFO Security Suite Select bits
 - 111 = AES-CBC-MAC-32
 - 110 = AES-CBC-MAC-64
 - 101 = AES-CBC-MAC-128
 - 100 = AES-CCM-32
 - 011 = AES-CCM-64
 - 010 = AES-CCM-128
 - 001 = AES-CTR
 - 000 = None (default)

bit 3-2
- **Reserved**: Read as ‘0’

bit 1
- **DISDEC**: Disable Decryption Function bit
 - 1 = Will not generate a security interrupt if security enabled bit is set in the MAC header

bit 0
- **DISENC**: Disable Encryption Function bit
 - 1 = Will not encrypt packet if transmit security is enabled
REGISTER 2-43: TXSTBL: TX STABILIZATION REGISTER (ADDRESS: 0x2E)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFSTBL3</td>
<td>RFSTBL2</td>
<td>RFSTBL1</td>
<td>RFSTBL0</td>
<td>MSIFS3</td>
<td>MSIFS2</td>
<td>MSIFS1</td>
<td>MSIFS0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7-4
RFSTBL<3:0>: VCO Stabilization Period bits
Units: symbol period (16 μs). Default value: 0x7. Recommended value: 0x9.

bit 3-0
MSIFS<3:0>: Minimum Short Interframe Spacing bits
The minimum number of symbols forming a Short Interframe Spacing (SIFS) period. Refer to IEEE 802.15.4™-2003 Standard, Section 7.5.1.2 “IFS” and Table 70: MAC Sublayer Constants.
MSIFS + RFSTBL = aMinSIFSPeriod = 12 symbols.
Units: symbol period (16 μs). Default value: 0x5.
REGISTER 2-44: RXSR: RX MAC STATUS REGISTER (ADDRESS: 0x30)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value at POR</th>
<th>Read as</th>
<th>Write as</th>
<th>Unimplemented bit, read as '0'</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
<td>'0'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>UPSECERR: MIC Error in Upper Layer Security Mode</td>
<td>'1'</td>
<td>'1'</td>
<td>'0'</td>
<td>'0' = Bit is cleared</td>
</tr>
<tr>
<td></td>
<td>Bit</td>
<td>Value</td>
<td>Read</td>
<td>Write</td>
<td>Clear</td>
</tr>
<tr>
<td>5</td>
<td>BATIND: Battery Low-Voltage Indicator</td>
<td>'1'</td>
<td>'1'</td>
<td>'0'</td>
<td>Supply voltage is lower than</td>
</tr>
<tr>
<td></td>
<td>Bit</td>
<td>Value</td>
<td>Read</td>
<td>Write</td>
<td>battery low-voltage threshold</td>
</tr>
<tr>
<td>4-3</td>
<td>Reserved</td>
<td>'0'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SECDECERR: Security Decryption Error</td>
<td>'1'</td>
<td>'1'</td>
<td>'0'</td>
<td>Security decryption error</td>
</tr>
<tr>
<td></td>
<td>Bit</td>
<td>Value</td>
<td>Read</td>
<td>Write</td>
<td>Error did not occur</td>
</tr>
<tr>
<td>1-0</td>
<td>Reserved</td>
<td>'0'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **r** = reserved
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **'1'** = Bit is set
- **'0'** = Bit is cleared
- **x** = Bit is unknown

Note 1: Battery low-voltage threshold (BATTH) value set in the RFCON5 (0x205<7:4>) register and the Battery Monitor Enable (BATEN) bit located in the RFCON6 (0x206<3>) register.
REGISTER 2-45: INTSTAT: INTERRUPT STATUS REGISTER (ADDRESS: 0x31)

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLPIF(1)</td>
<td>WAKEIF(1)</td>
<td>HSYMTMRIF(1)</td>
<td>SECIF(1)</td>
<td>RXIF(1)</td>
<td>TXG2IF(1)</td>
<td>TXG1IF(1)</td>
<td>TXNIF(1)</td>
</tr>
</tbody>
</table>

Legend:
- RC = Read to clear bit
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7 SLPIF: Sleep Alert Interrupt bit(1)
 1 = Sleep alert interrupt occurred
 0 = No Sleep alert interrupt occurred

bit 6 WAKEIF: Wake-up Alert Interrupt bit(1)
 1 = A wake-up alert interrupt occurred
 0 = No wake-up alert interrupt occurred

bit 5 HSYMTMRIF: Half Symbol Timer Interrupt bit(1)
 1 = A half symbol timer interrupt occurred
 0 = No half symbol timer interrupt occurred

bit 4 SECIF: Security Key Request Interrupt bit(1)
 1 = A security key request interrupt occurred
 0 = No security key request interrupt occurred

bit 3 RXIF: RX FIFO Reception Interrupt bit(1)
 1 = An RX FIFO reception interrupt occurred
 0 = No RX FIFO reception interrupt occurred

bit 2 TXG2IF: TX GTS2 FIFO Transmission Interrupt bit(1)
 1 = A TX GTS2 FIFO transmission interrupt occurred
 0 = No TX GTS2 FIFO transmission interrupt occurred

bit 1 TXG1IF: TX GTS1 FIFO Transmission Interrupt bit(1)
 1 = A TX GTS1 FIFO transmission interrupt occurred
 0 = No TX GTS1 FIFO transmission interrupt occurred

bit 0 TXNIF: TX Normal FIFO Release Interrupt bit(1)
 1 = A TX Normal FIFO transmission interrupt occurred
 0 = No TX Normal FIFO transmission interrupt occurred

Note 1: Interrupt bits are cleared to ‘0’ when the INTSTAT register is read.
REGISTER 2-46: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS: 0x32)

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLPIE</td>
<td>WAKEIE</td>
<td>HSYMTMRIE</td>
<td>SECIE</td>
<td>RXIE</td>
<td>TXG2IE</td>
<td>TXG1IE</td>
<td>TXNIE</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7 SLPIE: Sleep Alert Interrupt Enable bit
1 = Disables the Sleep alert interrupt (default)
0 = Enables the Sleep alert interrupt

bit 6 WAKEIE: Wake-up Alert Interrupt Enable bit
1 = Disables the wake-up alert interrupt (default)
0 = Enables the wake-up alert interrupt

bit 5 HSYMTMRIE: Half Symbol Timer Interrupt Enable bit
1 = Disables the half symbol timer interrupt (default)
0 = Enables the half symbol timer interrupt

bit 4 SECIE: Security Key Request Interrupt Enable bit
1 = Disables the security key request interrupt (default)
0 = Enable security key request interrupt

bit 3 RXIE: RX FIFO Reception Interrupt Enable bit
1 = Disables the RX FIFO reception interrupt (default)
0 = Enables the RX FIFO reception interrupt

bit 2 TXG2IE: TX GTS2 FIFO Transmission Interrupt Enable bit
1 = Disables the TX GTS2 FIFO transmission interrupt (default)
0 = Enables the TX GTS2 FIFO transmission interrupt

bit 1 TXG1IE: TX GTS1 FIFO Transmission Interrupt Enable bit
1 = Disables the TX GTS1 FIFO transmission interrupt (default)
0 = Enables the TX GTS1 FIFO transmission interrupt

bit 0 TXNIE: TX Normal FIFO Transmission Interrupt Enable bit
1 = Disables the TX Normal FIFO transmission interrupt (default)
0 = Enables the TX Normal FIFO transmission interrupt
REGISTER 2-47: GPIO: GPIO PORT REGISTER (ADDRESS: 0x33)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>GPIO5</td>
<td>GPIO4</td>
<td>GPIO3</td>
<td>GPIO2</td>
<td>GPIO1</td>
<td>GPIO0</td>
</tr>
</tbody>
</table>

Legend:
- r = reserved
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown

- **bit 7-6** Reserved: Maintain as ‘0’
- **bit 5** GPIO5: General Purpose I/O GPIO5 bit
- **bit 4** GPIO4: General Purpose I/O GPIO4 bit
- **bit 3** GPIO3: General Purpose I/O GPIO3 bit
- **bit 2** GPIO2: General Purpose I/O GPIO2 bit
- **bit 1** GPIO1: General Purpose I/O GPIO1 bit
- **bit 0** GPIO0: General Purpose I/O GPIO0 bit

REGISTER 2-48: TRISGPIO: GPIO PIN DIRECTION REGISTER (ADDRESS: 0x34)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>TRISGP5</td>
<td>TRISGP4</td>
<td>TRISGP3</td>
<td>TRISGP2</td>
<td>TRISGP1</td>
<td>TRISGP0</td>
</tr>
</tbody>
</table>

Legend:
- r = reserved
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown

- **bit 7-6** Reserved: Maintain as ‘0’
- **bit 5** TRISGP5: General Purpose I/O GPIO5 Direction bit
 - 1 = Output
 - 0 = Input (default)
- **bit 4** TRISGP4: General Purpose I/O GPIO4 Direction bit
 - 1 = Output
 - 0 = Input (default)
- **bit 3** TRISGP3: General Purpose I/O GPIO3 Direction bit
 - 1 = Output
 - 0 = Input (default)
- **bit 2** TRISGP2: General Purpose I/O GPIO2 Direction bit
 - 1 = Output
 - 0 = Input (default)
- **bit 1** TRISGP1: General Purpose I/O GPIO1 Direction bit
 - 1 = Output
 - 0 = Input (default)
- **bit 0** TRISGP0: General Purpose I/O GPIO0 Direction bit
 - 1 = Output
 - 0 = Input (default)
REGISTER 2-49: SLPACK: SLEEP ACKNOWLEDGEMENT AND WAKE-UP COUNTER REGISTER
(ADDRESS: 0x35)

<table>
<thead>
<tr>
<th>W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLPACK</td>
<td>WAKECNT6</td>
<td>WAKECNT5</td>
<td>WAKECNT4</td>
<td>WAKECNT3</td>
<td>WAKECNT2</td>
<td>WAKECNT1</td>
<td>WAKECNT0</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 **SLPACK**: Sleep Acknowledge bit
1 = Places the MRF24J40 to Sleep (automatically cleared to '0' by hardware)

bit 6-0 **WAKECNT<6:0>**: Wake Count bits
Main oscillator (20 MHz) start-up timer counter bits. WAKECNT is a 9-bit value. WAKECNT<8:7> bits are located in RFCTL<4:3>. Units: Sleep clock (SLPCLK) period. Default value: 0x00. Recommended value: 0x05F.

Note 1: Sleep Clock (SLPCLK) period depends on the Sleep Clock Selection (SLPCLKSEL) RFCON7<7:6> and Sleep Clock Divisor (SLPCLKDIV) SLPCON1<4:0>.
REGISTER 2-50: RFCTL: RF MODE CONTROL REGISTER (ADDRESS: 0x36)

<table>
<thead>
<tr>
<th>W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>r</td>
<td>WAKECNT8</td>
<td>WAKECNT7</td>
<td>RFRST(2)</td>
<td>RFTXMODE</td>
<td>RFRXMODE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 6-5</th>
<th>bit 4-3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>reserved</td>
<td>WAKECNT<8:7>: Wake Count bits</td>
<td>RFRST: RF State Machine Reset bit(2)</td>
<td>RFTXMODE: Forces RF Control State Machine to transmit State(3)</td>
<td>RFRXMODE: Forces RF Control State Machine to receive State</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **r** = reserved
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7-5
Reserved: Maintain as ‘0’

bit 4-3
WAKECNT<8:7>: Wake Count bits

Main oscillator (20 MHz) start-up timer counter bits. **WAKECNT** is a 9-bit value. **WAKECNT<6:0>** bits are located in **SLPACK<6:0>**. Units: Sleep clock (SLPCLK) period. Default value: 0x00. Recommended value: 0x05F

bit 2
RFRST: RF State Machine Reset bit(2)

- **1** = Hold RF state machine in Reset
- **0** = Normal operation of RF state machine

bit 1
RFTXMODE: Forces RF Control State Machine to transmit State(3)

bit 0
RFRXMODE: Forces RF Control State Machine to receive State

Note 1:
Sleep clock (SLPCLK) period depends on the Sleep clock selection (SLPCLKSEL) **RFCON7<7:6>** and Sleep clock divisor (SLPCLKDIV) **SLPCON1<4:0>**.

Note 2:
Perform RF Reset by setting **RFRST = 1** and then **RFRST = 0**. Delay at least 192 μs after performing to allow RF circuitry to calibrate.

Note 3:
Recommended sequence RFCTL = 0x06 (reset mode) then RFCTL = 0x02 (transmit mode).
REGISTER 2-51: SECCR2: SECURITY CONTROL 2 REGISTER (ADDRESS: 0x37)

<table>
<thead>
<tr>
<th>W-0</th>
<th>W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>bit 7</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDEC</td>
<td>UPENC</td>
<td>TXG2CIPHER2</td>
<td>TXG2CIPHER1</td>
<td>TXG2CIPHER0</td>
<td>TXG1CIPHER2</td>
<td>TXG1CIPHER1</td>
<td>TXG1CIPHER0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 **UPDEC**: Upper Layer Security Decryption Mode bit
1 = Perform upper layer decryption using TX Normal FIFO. Automatically cleared to '0' when finished.

bit 6 **UPENC**: Upper Layer Security Encryption Mode bit
1 = Perform upper layer encryption using TX Normal FIFO. Automatically cleared to '0' when finished.

bit 5-3 **TXG2CIPHER<2:0>**: TX GTS2 FIFO Security Suite Select bits
111 = AES-CBC-MAC-32
110 = AES-CBC-MAC-64
101 = AES-CBC-MAC-128
100 = AES-CCM-32
011 = AES-CCM-64
010 = AES-CCM-128
001 = AES-CTR
000 = None (default)

bit 2-0 **TXG1CIPHER<2:0>**: TX GTS1 FIFO Security Suite Select bits
111 = AES-CBC-MAC-32
110 = AES-CBC-MAC-64
101 = AES-CBC-MAC-128
100 = AES-CCM-32
011 = AES-CCM-64
010 = AES-CCM-128
001 = AES-CTR
000 = None (default)
REGISTER 2-52: BBREG0: BASEBAND 0 REGISTER (ADDRESS: 0x38)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TURBO</td>
</tr>
</tbody>
</table>

Legend:
- **r** = reserved
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7
Reserved: Maintain as ‘0’

bit 0
TURBO: Turbo Mode Enable bit
- **1** = Turbo mode (625 kbps)
- **0** = IEEE 802.15.4™ mode (250 kbps)

REGISTER 2-53: BBREG1: BASEBAND 1 REGISTER (ADDRESS: 0x39)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RXDECINV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **r** = reserved
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7-3
Reserved: Maintain as ‘0’

bit 2
RXDECINV: RX Decode Inversion bit
- **1** = RX decode symbol sign inverted
- **0** = RX decode symbol sign not inverted (default)

bit 1-0
Reserved: Maintain as ‘0’
REGISTER 2-54: BBREG2: BASEBAND 2 REGISTER (ADDRESS: 0x3A)

<table>
<thead>
<tr>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-1</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-1</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>CCAMODE1</td>
<td>CCAMODE0</td>
<td>CCACSTH3</td>
<td>CCACSTH2</td>
<td>CCATCSH1</td>
<td>CCACSTH0</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
- `r` = reserved
- `R` = Readable bit
- `W` = Writable bit
- `U` = Unimplemented bit, read as ‘0’
- `-n` = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - `x` = Bit is unknown

bit 7-6 **CCAMODE<1:0>:** Clear Channel Assessment (CCA) Mode bits
- **11** = CCA Mode 3: Carrier sense with energy above threshold. CCA shall report a busy medium only upon the detection of a signal with the modulation and spreading characteristics of IEEE 802.15.4™ with energy above the Energy Detection (ED) threshold.
- **10** = CCA Mode 1: Energy above threshold. CCA shall report a busy medium upon detecting any energy above the Energy Detection (ED) threshold.
- **01** = CCA Mode 2: Carrier sense only. CCA shall report a busy medium only upon the detection of a signal with the modulation and spreading characteristics of IEEE 802.15.4. This signal may be above or below the Energy Detection (ED) threshold (default).
- **00** = Reserved

bit 5-2 **CCACSTH<3:0>:** Clear Channel Assessment (CCA) Carrier Sense (CS) Threshold bits
- **1111** = Recommended value
- **1110** = Recommended value
- **1101** =
- **1100** =
- **1011** =
- **1010** =
- **1001** =
- **1000** =
- **0010** = (default)
- **0011** =
- **0001** =
- **0000** =

bit 1-0 **Reserved:** Maintain as ‘0’

REGISTER 2-55: BBREG3: BASEBAND 3 REGISTER (ADDRESS: 0x3B)

<table>
<thead>
<tr>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-1</td>
<td>R/W-1</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-1</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>PREVALIDTH3</td>
<td>PREVALIDTH2</td>
<td>PREVALIDTH1</td>
<td>PREVALIDTH0</td>
<td>PREDETTH2</td>
<td>PREDETTH1</td>
<td>PREDETTH0</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
- `r` = reserved
- `R` = Readable bit
- `W` = Writable bit
- `U` = Unimplemented bit, read as ‘0’
- `-n` = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - `x` = Bit is unknown

bit 7-4 **PREVALIDTH<3:0>:** Preamble Search Energy Valid Threshold bits
- **1111** = IEEE 802.15.4™ (250 kbps) optimized value (default)
- **0011** = Turbo mode (625 kbps) optimized value

bit 3-1 **PREDETTH<2:0>:** Preamble Search Energy Detection Threshold bits
- **Default value: 0x4.**

bit 0 **Reserved:** Maintain as ‘0’
REGISTER 2-56: BBREG4: BASEBAND 4 REGISTER (ADDRESS: 0x3C)

<table>
<thead>
<tr>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTH2</td>
<td>CSTH1</td>
<td>CSTH0</td>
<td>PRECNT2</td>
<td>PRECNT1</td>
<td>PRECNT0</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

bit 7-5
CSTH<2:0>: Carrier Sense Threshold bits
100 = IEEE 802.15.4™ (250 kbps) optimized value (default)
010 = Turbo mode (625 kbps) optimized value

bit 4-2
PRECNT<2:0>: Preamble Counter Threshold bits
111 = Optimized value (default)

bit 1-0
Reserved: Maintain as ‘0’

REGISTER 2-57: BBREG6: BASEBAND 6 REGISTER (ADDRESS: 0x3E)

<table>
<thead>
<tr>
<th>W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSSIMODE1</td>
<td>RSSIMODE2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RSSIRDY</td>
</tr>
</tbody>
</table>

bit 7
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’

-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 7
RSSIMODE1: RSSI Mode 1 bit
1 = Initiate RSSI calculation (bit is automatically cleared to ‘0’ by hardware)

bit 6
RSSIMODE2: RSSI Mode 2 bit
1 = Calculate RSSI for each received packet. The RSSI value is stored in RXFIFO
0 = RSSI calculation is not performed for each received packet (default)

bit 5-1
Reserved: Maintain as ‘0’

bit 0
RSSIRDY: RSSI Ready Signal for RSSIMODE1 bit
If RSSIMODE1 = 1, then
1 = RSSI calculation has finished and the RSSI value is ready
0 = RSSI calculation in progress
REGISTER 2-58: CCAEDTH: ENERGY DETECTION THRESHOLD FOR CCA REGISTER (ADDRESS: 0x3F)

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCAEDTH7</td>
<td>CCAEDTH6</td>
<td>CCAEDTH5</td>
<td>CCAEDTH4</td>
<td>CCAEDTH3</td>
<td>CCAEDTH2</td>
<td>CCAEDTH1</td>
<td>CCAEDTH0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7-0: CCAEDTH<7:0>: Clear Channel Assessment (CCA) Energy Detection (ED) Mode bits

If the in-band signal strength is greater than the threshold, the channel is busy. The 8-bit value can be mapped to a power level according to RSSI. Refer to Section 3.6 “Received Signal Strength Indicator (RSSI)/Energy Detection (ED)”.

Default value: 0x00. Recommended value: 0x60 (approximately -69 dBm).
2.15.4 LONG ADDRESS CONTROL

REGISTERS DETAIL

REGISTER 2-59: RFCON0: RF CONTROL 0 REGISTER (ADDRESS: 0x200)

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>CHANNEL3</th>
<th>CHANNEL2</th>
<th>CHANNEL1</th>
<th>CHANNEL0</th>
<th>RFOPT3</th>
<th>RFOPT2</th>
<th>RFOPT1</th>
<th>RFOPT0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7-4 CHANNEL<3:0>: Channel Number bits
- 0000 = Channel 11 (2405 MHz) (default)
- 0001 = Channel 12 (2410 MHz)
- 0010 = Channel 13 (2415 MHz)
- ...
- 1111 = Channel 26 (2480 MHz)

bit 3-0 RFOPT<3:0>: RF Optimize Control bits
- Default value: 0x0. Recommended value: 0x3.

REGISTER 2-60: RFCON1: RF CONTROL 1 REGISTER (ADDRESS: 0x201)

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>VCOOPT7</th>
<th>VCOOPT6</th>
<th>VCOOPT5</th>
<th>VCOOPT4</th>
<th>VCOOPT3</th>
<th>VCOOPT2</th>
<th>VCOOPT1</th>
<th>VCOOPT0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
<td>R/W</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7-0 VCOOPT<7:0>: VCO Optimize Control bits
- Default value: 0x0. Recommended value: 0x2.
REGISTER 2-61: RFCON2: RF CONTROL 2 REGISTER (ADDRESS: 0x202)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLLEN</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
r = reserved
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-<n> = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 7 PLLEN: PLL Enable⁽¹⁾
1 = Enabled
0 = Disabled (default)

bit 6-0 Reserved: Maintain as ‘0’

Note 1: PLL must be enabled for RF reception or transmission.

REGISTER 2-62: RFCON3: RF CONTROL 3 REGISTER (ADDRESS: 0x203)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXPWRL1</td>
<td>TXPWRL0</td>
<td>TXPWRS2</td>
<td>TXPWRS1</td>
<td>TXPWRS0</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-<n> = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 7-6 TXPWRL<1:0>: Large Scale Control for TX Power bits
11 = -30 dB
10 = -20 dB
01 = -10 dB
00 = 0 dB

bit 5-3 TXPWRS<2:0>: Small Scale Control for TX Power bits
111 = -6.3 dB
110 = -4.9 dB
101 = -3.7 dB
100 = -2.8 dB
011 = -1.9 dB
010 = -1.2 dB
001 = -0.5 dB
000 = 0 dB

bit 2-0 Reserved: Maintain as ‘0’
REGISTER 2-63: RFCON5: RF CONTROL 5 REGISTER (ADDRESS: 0x205)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATTH3(1)</td>
<td>BATTH2(1)</td>
<td>BATTH1(1)</td>
<td>BATTH0(1)</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
- r = reserved
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7-4 BATTH<3:0>: Battery Low-Voltage Threshold bits(1)
- 1110 = 3.5V
- 1101 = 3.3V
- 1100 = 3.2V
- 1011 = 3.1V
- 1010 = 2.8V
- 1001 = 2.7V
- 1000 = 2.6V
- 0111 = 2.5V
- 0110 = Undefined
- ...
- 0000 = Undefined

bit 3-0 Reserved: Maintain as ‘0’

Note 1: The Battery Low-Voltage Indicator (BATIND) bit is located in the RXSR (0x30<5>) register and the Battery Monitor Enable (BATEN) bit is located in the RFCON6 (0x206<3>) register.

REGISTER 2-64: RFCON6: RF CONTROL 6 REGISTER (ADDRESS: 0x206)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXFIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20MRECVR</td>
<td>BATEN(1)</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
- r = reserved
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 7 TXFIL: TX Filter Control bit
- Default value: ‘0’. Recommended value: ‘1’.

bit 6-5 Reserved: Maintain as ‘0’

bit 4 20MRECVR: 20 MHz Clock Recovery Control bits
- Recovery from Sleep control.
- 1 = Less than 1 ms (recommended)
- 0 = Less than 3 ms (default)

bit 3 BATEN: Battery Monitor Enable bit(1)
- 1 = Enabled
- 0 = Disabled (default)

bit 2-0 Reserved: Maintain as ‘0’

Note 1: The Battery Low-Voltage Threshold (BATTH) bits are located in the RFCON5 (0x205<7:4>) register and the Battery Low-Voltage Indicator (BATIND) bit is located in the RXSR (0x30<5>) register.
REGISTER 2-65: RFCON7: RF CONTROL 7 REGISTER (ADDRESS: 0x207)

<table>
<thead>
<tr>
<th></th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLPCLKSEL1</td>
<td></td>
<td>SLPCLKSEL0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7-6</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- n = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown

bit 7-6

SLPCLKSEL<1:0>: Sleep Clock Selection bits
- 10 = 100 kHz internal oscillator
- 01 = 32 kHz external crystal oscillator

bit 5-0

Reserved: Maintain as ‘0’

REGISTER 2-66: RFCON8: RF CONTROL 8 REGISTER (ADDRESS: 0x208)

<table>
<thead>
<tr>
<th></th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFVCO:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default value: ‘0’. Recommended value: ‘1’.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- n = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown

bit 7-5

Reserved: Maintain as ‘0’

bit 4

RFVCO: VCO Control bit
- Default value: ‘0’. Recommended value: ‘1’.

bit 3-0

Reserved: Maintain as ‘0’
REGISTER 2-67: SLPCAL0: SLEEP CALIBRATION 0 REGISTER (ADDRESS: 0x209)

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLPCAL7</td>
<td>SLPCAL6</td>
<td>SLPCAL5</td>
<td>SLPCAL4</td>
<td>SLPCAL3</td>
<td>SLPCAL2</td>
<td>SLPCAL1</td>
<td>SLPCAL0</td>
</tr>
<tr>
<td>bit 7</td>
<td>bit 6</td>
<td>bit 5</td>
<td>bit 4</td>
<td>bit 3</td>
<td>bit 2</td>
<td>bit 1</td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- -n = Value at POR
- '1' = Bit is set
- '0' = Bit is cleared
- x = Bit is unknown

bit 7-0 **SLPCAL<7:0>:** Sleep Calibration Counter bits
20-bit counter to calibrate the Sleep Clock (SLPCLK) period. The counter contains the count of 16 SLPCLK periods. The SLPCLK period depends on the Sleep Clock Selection (SLPCLKSEL), RFCON7<7:6> and Sleep Clock Divisor (SLPCLKDIV) SLPCON1<4:0> bits. Units: tick (50 ns).

REGISTER 2-68: SLPCAL1: SLEEP CALIBRATION 1 REGISTER (ADDRESS: 0x20A)

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLPCAL15</td>
<td>SLPCAL14</td>
<td>SLPCAL13</td>
<td>SLPCAL12</td>
<td>SLPCAL11</td>
<td>SLPCAL10</td>
<td>SLPCAL9</td>
<td>SLPCAL8</td>
</tr>
<tr>
<td>bit 7</td>
<td>bit 6</td>
<td>bit 5</td>
<td>bit 4</td>
<td>bit 3</td>
<td>bit 2</td>
<td>bit 1</td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- -n = Value at POR
- '1' = Bit is set
- '0' = Bit is cleared
- x = Bit is unknown

bit 7-0 **SLPCAL<15:8>:** Sleep Calibration Counter bits
20-bit counter to calibrate the Sleep Clock (SLPCLK) period. The counter contains the count of 16 SLPCLK periods. The SLPCLK period depends on the Sleep Clock Selection (SLPCLKSEL), RFCON7<7:6> and Sleep Clock Divisor (SLPCLKDIV) SLPCON1<4:0> bits. Units: tick (50 ns).
REGISTER 2-69: SLPCAL2: SLEEP CALIBRATION 2 REGISTER (ADDRESS: 0x20B)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SLPCALRDY: Sleep Calibration Ready bit</td>
</tr>
<tr>
<td></td>
<td>(1 = \text{Sleep calibration count is complete})</td>
</tr>
<tr>
<td>6-5</td>
<td>Reserved: Maintain as (0)</td>
</tr>
<tr>
<td>4</td>
<td>SLPCALEN: Sleep Calibration Enable bit</td>
</tr>
<tr>
<td></td>
<td>(1 = \text{Starts the Sleep calibration counter. Automatically cleared to } 0\text{ by hardware})</td>
</tr>
<tr>
<td>3-0</td>
<td>SLPCAL<19:16>: Sleep Calibration Counter bits</td>
</tr>
<tr>
<td></td>
<td>20-bit counter to calibrate the Sleep Clock (SLPCLK) period. The counter contains the count of 16 SLPCLK periods. The SLPCLK period depends on the Sleep Clock Selection (SLPCLKSEL), RFCON7<7:6> and Sleep Clock Divisor (SLPCLKDIV) SLPCON1<4:0> bits. Units: tick (50 ns).</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as \(0\)
- \(n\) = Value at POR
- \(1\) = Bit set
- \(0\) = Bit cleared
- \(x\) = Bit is unknown
REGISTER 2-70: RFSTATE: RF STATE REGISTER (ADDRESS: 0x20F)

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFSTATE2</td>
<td>RFSTATE1</td>
<td>RFSTATE0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writeable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 RFSTATE<2:0>: RF State Machine bits
111 = RTSEL2
110 = RTSEL1
101 = RX
100 = TX
011 = CALVCO
010 = SLEEP
001 = CALFIL
000 = RESET

bit 4-0 Reserved: Maintain as ‘0’

REGISTER 2-71: RSSI: AVERAGED RSSI VALUE REGISTER (ADDRESS: 0x210)

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSSI7(f)</td>
<td>RSSI6(f)</td>
<td>RSSI5(f)</td>
<td>RSSI4(f)</td>
<td>RSSI3(f)</td>
<td>RSSI2(f)</td>
<td>RSSI1(f)</td>
<td>RSSI0(f)</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writeable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 RSSI<7:0>: Averaged RSSI Value bits(f)

Note 1: The number of RSSI samples averaged, set by RSSINUMx (0x25<5:4>) bits.
REGISTER 2-72: SLPCON0: SLEEP CLOCK CONTROL 0 REGISTER (ADDRESS: 0x211)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>bit 7</th>
<th>INTEDGE(1)</th>
<th>SLPCLKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 7-2 Reserved: Maintain as ‘0’
bit 1 INTEDGE: Interrupt Edge Polarity bit(1)
1 = Rising edge
0 = Falling edge (default)
bit 0 SLPCLKEN: Sleep Clock Enable bit
1 = Disabled
0 = Enabled (default)

Note 1: Ensure that the interrupt polarity matches the interrupt pin polarity on the host microcontroller.

REGISTER 2-73: SLPCON1: SLEEP CLOCK CONTROL 1 REGISTER (ADDRESS: 0x220)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>bit 7</th>
<th>CLKOUTEN</th>
<th>SLPCLKDIV4</th>
<th>SLPCLKDIV3</th>
<th>SLPCLKDIV2</th>
<th>SLPCLKDIV1</th>
<th>SLPCLKDIV0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
r = reserved
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 7-6 Reserved: Maintain as ‘0’
bit 5 CLKOUTEN: CLKOUT Pin Enable bit
The CLKOUT pin 26 feature has been discontinued. It is recommended that it be disabled.
1 = Disable (recommended)
0 = Enable (default)
bit 4-0 SLPCLKDIV<4:0>: Sleep Clock Divisor bits
Sleep clock is divided by 2^n, where n = SLPCLKDIV.(1) Default value: 0x00.

Note 1: If the Sleep Clock Selection, SLPCLKSEL (0x207<7:6), is the internal oscillator (100 kHz), set SLPCLKDIV to a minimum value of 0x01.
REGISTER 2-74: WAKETIMEL: WAKE-UP TIME MATCH VALUE LOW REGISTER
(ADDRESS: 0x222)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAKETIME7(1)</td>
<td>WAKETIME6(1)</td>
<td>WAKETIME5(1)</td>
<td>WAKETIME4(1)</td>
<td>WAKETIME3(1)</td>
<td>WAKETIME2(1)</td>
<td>WAKETIME1(1)</td>
<td>WAKETIME0(1)</td>
</tr>
</tbody>
</table>

bit 7-0
WAKETIME<7:0>: Wake Time Match Value bits(1)
WAKETIME is an 11-bit value that is compared with the Main Counter (MAINCNT) to signal the time to enable (wake-up) the 20 MHz main oscillator when the MRF24J40 is using the Sleep mode timers. Default value: 0x00A. Minimum value: 0x001.

Note 1:
Rule: WAKETIME > WAKECNT.

REGISTER 2-75: WAKETIMEH: WAKE-UP TIME MATCH VALUE HIGH REGISTER
(ADDRESS: 0x223)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>WAKETIME10(1)</td>
<td>WAKETIME9(1)</td>
<td>WAKETIME8(1)</td>
</tr>
</tbody>
</table>

bit 7-0
WAKETIME<10:8>: Wake-up Time Counted by SLPCLK bits(1)
WAKETIME is an 11-bit value that is compared with the Main Counter (MAINCNT) to signal the time to enable (wake-up) the 20 MHz main oscillator when the MRF24J40 is using the Sleep mode timers. Default value: 0x00A. Minimum value: 0x001.

Note 1:
Rule: WAKETIME > WAKECNT.
REGISTER 2-76: REMCNTL: REMAIN COUNTER LOW REGISTER (ADDRESS: 0x224)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMCNT7</td>
<td>REMCNT6</td>
<td>REMCNT5</td>
<td>REMCNT4</td>
<td>REMCNT3</td>
<td>REMCNT2</td>
<td>REMCNT1</td>
<td>REMCNT0</td>
</tr>
</tbody>
</table>

| bit 7 | bit 0 |

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 REMCNT<7:0>: Remain Counter bits
Remain counter is a 16-bit counter. Together with the main counter times events: Beacon Interval (BI) and inactive period for beacon-enabled devices and Sleep interval for nonbeacon-enabled devices. Units: tick (50 ns).

REGISTER 2-77: REMCNTH: REMAIN COUNTER HIGH REGISTER (ADDRESS: 0x225)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMCNT15</td>
<td>REMCNT14</td>
<td>REMCNT13</td>
<td>REMCNT12</td>
<td>REMCNT11</td>
<td>REMCNT10</td>
<td>REMCNT9</td>
<td>REMCNT8</td>
</tr>
</tbody>
</table>

| bit 7 | bit 0 |

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 REMCNT<15:8>: Remain Counter bits
Remain counter is a 16-bit counter. Together with the main counter times events: Beacon Interval (BI) and inactive period for beacon-enabled devices and Sleep interval for nonbeacon-enabled devices. Units: tick (50 ns).
REGISTER 2-78: MAINCNT0: MAIN COUNTER 0 REGISTER (ADDRESS: 0x226)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINCNT7</td>
<td>MAINCNT6</td>
<td>MAINCNT5</td>
<td>MAINCNT4</td>
<td>MAINCNT3</td>
<td>MAINCNT2</td>
<td>MAINCNT1</td>
<td>MAINCNT0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7-0 MAINCNT<7:0>: Main Counter bits

Main counter is a 26-bit counter. Together with the remain counter times events: Beacon Interval (BI) and inactive period for beacon-enabled devices and Sleep interval for nonbeacon-enabled devices. Units: SLPCLK

Note 1: Sleep Clock (SLPCLK) period depends on the Sleep Clock Selection (SLPCLKSEL) RFCON<7:6> and Sleep Clock Divisor (SLPCLKDIV) CLKCON<4:0> bits.

REGISTER 2-79: MAINCNT1: MAIN COUNTER 1 REGISTER (ADDRESS: 0x227)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINCNT15</td>
<td>MAINCNT14</td>
<td>MAINCNT13</td>
<td>MAINCNT12</td>
<td>MAINCNT11</td>
<td>MAINCNT10</td>
<td>MAINCNT9</td>
<td>MAINCNT8</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7-0 MAINCNT<15:8>: Main Counter bits

Main counter is a 26-bit counter. Together with the remain counter times events: Beacon Interval (BI) and inactive period for beacon-enabled devices and Sleep interval for nonbeacon-enabled devices. Units: SLPCLK

Note 1: Sleep Clock (SLPCLK) period depends on the Sleep Clock Selection (SLPCLKSEL) RFCON<7:6> and Sleep Clock Divisor (SLPCLKDIV) CLKCON<4:0> bits.
REGISTER 2-80: MAINCNT2: MAIN COUNTER 2 REGISTER (ADDRESS: 0x228)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINCNT23</td>
<td>MAINCNT22</td>
<td>MAINCNT21</td>
<td>MAINCNT20</td>
<td>MAINCNT19</td>
<td>MAINCNT18</td>
<td>MAINCNT17</td>
<td>MAINCNT16</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 MAINCNT<23:16>: Main Counter bits
Main counter is a 26-bit counter. Together with the remain counter times events: Beacon Interval (BI) and inactive period for beacon-enabled devices and Sleep interval for nonbeacon-enabled devices. Units: SLPCLK.(1)

Note 1: Sleep Clock (SLPCLK) period depends on the Sleep Clock Selection (SLPCLKSEL) RFCON<7:6> and Sleep Clock Divisor (SLPCLKDIV) CLKCON<4:0> bits.

REGISTER 2-81: MAINCNT3: MAIN COUNTER 3 REGISTER (ADDRESS: 0x229)

<table>
<thead>
<tr>
<th>W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARTCNT</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>MAINCNT25</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 STARTCNT: Start Sleep Mode Counters bits
1 = Trigger Sleep mode for Nonbeacon Enable mode (BO = 0xF and Slotted = 0). Bit automatically clears to ‘0’.

bit 6-2 Reserved: Maintain as ‘0’

bit 1-0 MAINCNT<25:24>: Main Counter bits
Main counter is a 26-bit counter. Together with the remain counter times events: Beacon Interval (BI) and inactive period for beacon-enabled devices and Sleep interval for nonbeacon-enabled devices. Units: SLPCLK.(1)

Note 1: Sleep Clock (SLPCLK) period depends on the Sleep Clock Selection (SLPCLKSEL) RFCON<7:6> and Sleep Clock Divisor (SLPCLKDIV) CLKCON<4:0> bits.
REGISTER 2-82: TESTMODE: TEST MODE REGISTER (ADDRESS: 0x22F)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RSSIWAIT1</td>
<td>RSSIWAIT0</td>
<td>TESTMODE2</td>
<td>TESTMODE1</td>
</tr>
</tbody>
</table>

bit 7-5 Reserved: Maintain as ‘0’

bit 4-3 RSSIWAIT<1:0>: RSSI State Machine Parameter bits
01 = Optimized value (default)

bit 2-0 TESTMODE<2:0>: Test Mode bits
111 = GPIO0, GPIO1 and GPIO2 are configured to control an external PA and/or LNA(1)
101 = Single Tone Test mode
000 = Normal operation (default)

Note 1: Refer to Section 4.2 “External PA/LNA Control” for more information.
REGISTER 2-83: ASSOEADR0: ASSOCIATED COORDINATOR EXTENDED ADDRESS 0

REGISTER (ADDRESS: 0x230)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOEADR7</td>
<td>ASSOEADR6</td>
<td>ASSOEADR5</td>
<td>ASSOEADR4</td>
<td>ASSOEADR3</td>
<td>ASSOEADR2</td>
<td>ASSOEADR1</td>
<td>ASSOEADR0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7-0
ASSOEADR<7:0>: 64-Bit Extended Address of Associated Coordinator bits

REGISTER 2-84: ASSOEADR1: ASSOCIATED COORDINATOR EXTENDED ADDRESS 1

REGISTER (ADDRESS: 0x231)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOEADR15</td>
<td>ASSOEADR14</td>
<td>ASSOEADR13</td>
<td>ASSOEADR12</td>
<td>ASSOEADR11</td>
<td>ASSOEADR10</td>
<td>ASSOEADR9</td>
<td>ASSOEADR8</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 7-0
ASSOEADR<15:8>: 64-Bit Extended Address of Associated Coordinator bits
REGISTER 2-85: ASSOEADR2: ASSOCIATED COORDINATOR EXTENDED ADDRESS 2 REGISTER (ADDRESS: 0x232)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOEADR23</td>
<td>ASSOEADR22</td>
<td>ASSOEADR21</td>
<td>ASSOEADR20</td>
<td>ASSOEADR19</td>
<td>ASSOEADR18</td>
<td>ASSOEADR17</td>
<td>ASSOEADR16</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0 **ASSOEADR<23:16>:** 64-Bit Extended Address of Associated Coordinator bits

REGISTER 2-86: ASSOEADR3: ASSOCIATED COORDINATOR EXTENDED ADDRESS 3 REGISTER (ADDRESS: 0x233)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOEADR31</td>
<td>ASSOEADR30</td>
<td>ASSOEADR29</td>
<td>ASSOEADR28</td>
<td>ASSOEADR27</td>
<td>ASSOEADR26</td>
<td>ASSOEADR25</td>
<td>ASSOEADR24</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0 **ASSOEADR<31:24>:** 64-Bit Extended Address of Associated Coordinator bits
REGISTER 2-87: ASSOEADR4: ASSOCIATED COORDINATOR EXTENDED ADDRESS 4
REGISTER (ADDRESS: 0x234)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOEADR39</td>
<td>ASSOEADR38</td>
<td>ASSOEADR37</td>
<td>ASSOEADR36</td>
<td>ASSOEADR35</td>
<td>ASSOEADR34</td>
<td>ASSOEADR33</td>
<td>ASSOEADR32</td>
</tr>
</tbody>
</table>

Legend:
- \(R \) = Readable bit
- \(W \) = Writable bit
- \(U \) = Unimplemented bit, read as '0'
- \(-n \) = Value at POR
- \('1' \) = Bit is set
- \('0' \) = Bit is cleared
- \(x \) = Bit is unknown

bit 7-0 \ ASSOEADR<39:32>: 64-Bit Extended Address of Associated Coordinator bits

REGISTER 2-88: ASSOEADR5: ASSOCIATED COORDINATOR EXTENDED ADDRESS 5
REGISTER (ADDRESS: 0x235)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOEADR47</td>
<td>ASSOEADR46</td>
<td>ASSOEADR45</td>
<td>ASSOEADR44</td>
<td>ASSOEADR43</td>
<td>ASSOEADR42</td>
<td>ASSOEADR41</td>
<td>ASSOEADR40</td>
</tr>
</tbody>
</table>

Legend:
- \(R \) = Readable bit
- \(W \) = Writable bit
- \(U \) = Unimplemented bit, read as '0'
- \(-n \) = Value at POR
- \('1' \) = Bit is set
- \('0' \) = Bit is cleared
- \(x \) = Bit is unknown

bit 7-0 \ ASSOEADR<47:40>: 64-Bit Extended Address of Associated Coordinator bits
REGISTER 2-89: ASSOEADR6: ASSOCIATED COORDINATOR EXTENDED ADDRESS 6
REGISTER (ADDRESS: 0x236)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOEADR55</td>
<td>ASSOEADR54</td>
<td>ASSOEADR53</td>
<td>ASSOEADR52</td>
<td>ASSOEADR51</td>
<td>ASSOEADR50</td>
<td>ASSOEADR49</td>
<td>ASSOEADR48</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **'1'** = Bit is set
- **'0'** = Bit is cleared
- **x** = Bit is unknown

bit 7-0 **ASSOEADR<55:48>: 64-Bit Extended Address of Associated Coordinator bits**

REGISTER 2-90: ASSOEADR7: ASSOCIATED COORDINATOR EXTENDED ADDRESS 7
REGISTER (ADDRESS: 0x237)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOEADR63</td>
<td>ASSOEADR62</td>
<td>ASSOEADR61</td>
<td>ASSOEADR60</td>
<td>ASSOEADR59</td>
<td>ASSOEADR58</td>
<td>ASSOEADR57</td>
<td>ASSOEADR56</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **'1'** = Bit is set
- **'0'** = Bit is cleared
- **x** = Bit is unknown

bit 7-0 **ASSOEADR<63:56>: 64-Bit Extended Address of Associated Coordinator bits**
REGISTER 2-91: ASSOSADR0: ASSOCIATED COORDINATOR SHORT ADDRESS 0 REGISTER (ADDRESS: 0x238)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOSADR7</td>
<td>ASSOSADR6</td>
<td>ASSOSADR5</td>
<td>ASSOSADR4</td>
<td>ASSOSADR3</td>
<td>ASSOSADR2</td>
<td>ASSOSADR1</td>
<td>ASSOSADR0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOSADR<7:0>: 16-Bit Short Address of Associated Coordinator bits</td>
<td></td>
</tr>
</tbody>
</table>

REGISTER 2-92: ASSOSADR1: ASSOCIATED COORDINATOR SHORT ADDRESS 1 REGISTER (ADDRESS: 0x239)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOSADR15</td>
<td>ASSOSADR14</td>
<td>ASSOSADR13</td>
<td>ASSOSADR12</td>
<td>ASSOSADR11</td>
<td>ASSOSADR10</td>
<td>ASSOSADR9</td>
<td>ASSOSADR8</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOSADR<15:8>: 16-Bit Short Address of Associated Coordinator bits</td>
<td></td>
</tr>
</tbody>
</table>
REGISTER 2-93: UPNONCE0: UPPER NONCE SECURITY 0 REGISTER (ADDRESS: 0x240)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE7</td>
<td>UPNONCE6</td>
<td>UPNONCE5</td>
<td>UPNONCE4</td>
<td>UPNONCE3</td>
<td>UPNONCE2</td>
<td>UPNONCE1</td>
<td>UPNONCE0</td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

<table>
<thead>
<tr>
<th>bit 7-0</th>
<th>UPNONCE<7:0>: Upper Nonce bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13-byte nonce value used in security.</td>
</tr>
</tbody>
</table>

REGISTER 2-94: UPNONCE1: UPPER NONCE SECURITY 1 REGISTER (ADDRESS: 0x241)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE15</td>
<td>UPNONCE14</td>
<td>UPNONCE13</td>
<td>UPNONCE12</td>
<td>UPNONCE11</td>
<td>UPNONCE10</td>
<td>UPNONCE9</td>
<td>UPNONCE8</td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

<table>
<thead>
<tr>
<th>bit 7-0</th>
<th>UPNONCE<15:8>: Upper Nonce bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13-byte nonce value used in security.</td>
</tr>
</tbody>
</table>
REGISTER 2-95: UPNONCE2: UPPER NONCE SECURITY 2 REGISTER (ADDRESS: 0x242)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE23</td>
<td>UPNONCE22</td>
<td>UPNONCE21</td>
<td>UPNONCE20</td>
<td>UPNONCE19</td>
<td>UPNONCE18</td>
<td>UPNONCE17</td>
<td>UPNONCE16</td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0 **UPNONCE<23:16>:** Upper Nonce bits
13-byte nonce value used in security.

REGISTER 2-96: UPNONCE3: UPPER NONCE SECURITY 3 REGISTER (ADDRESS: 0x243)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE31</td>
<td>UPNONCE30</td>
<td>UPNONCE29</td>
<td>UPNONCE28</td>
<td>UPNONCE27</td>
<td>UPNONCE26</td>
<td>UPNONCE25</td>
<td>UPNONCE24</td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0 **UPNONCE<31:24>:** Upper Nonce bits
13-byte nonce value used in security.
REGISTER 2-97: UPNONCE4: UPPER NONCE SECURITY 4 REGISTER (ADDRESS: 0x244)

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>UPNONCE<39:32>: Upper Nonce bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13-byte nonce value used in security.</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- '1' = Bit is set
- '0' = Bit is cleared
- **x** = Bit is unknown

REGISTER 2-98: UPNONCE5: UPPER NONCE SECURITY 5 REGISTER (ADDRESS: 0x245)

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>UPNONCE<47:40>: Upper Nonce bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13-byte nonce value used in security.</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- '1' = Bit is set
- '0' = Bit is cleared
- **x** = Bit is unknown
REGISTER 2-99: UPNONCE6: UPPER NONCE SECURITY 6 REGISTER (ADDRESS: 0x246)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE55</td>
<td>UPNONCE54</td>
<td>UPNONCE53</td>
<td>UPNONCE52</td>
<td>UPNONCE51</td>
<td>UPNONCE50</td>
<td>UPNONCE49</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0

UPNONCE<55:48>: Upper Nonce bits
13-byte nonce value used in security.

REGISTER 2-100: UPNONCE7: UPPER NONCE SECURITY 7 REGISTER (ADDRESS: 0x247)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE63</td>
<td>UPNONCE62</td>
<td>UPNONCE61</td>
<td>UPNONCE60</td>
<td>UPNONCE59</td>
<td>UPNONCE58</td>
<td>UPNONCE57</td>
<td>UPNONCE56</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0

UPNONCE<63:56>: Upper Nonce bits
13-byte nonce value used in security.
REGISTER 2-101: UPNONCE8: UPPER NONCE SECURITY 8 REGISTER (ADDRESS: 0x248)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE71</td>
<td>UPNONCE70</td>
<td>UPNONCE69</td>
<td>UPNONCE68</td>
<td>UPNONCE67</td>
<td>UPNONCE66</td>
<td>UPNONCE65</td>
<td>UPNONCE64</td>
</tr>
</tbody>
</table>

bit 7 - 0

Legend:
- **R** = Readable bit
- **W** =Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **’1’** = Bit is set
- **’0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0

UPNONCE<71:64>: Upper Nonce bits
13-byte nonce value used in security.

REGISTER 2-102: UPNONCE9: UPPER NONCE SECURITY 9 REGISTER (ADDRESS: 0x249)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE79</td>
<td>UPNONCE78</td>
<td>UPNONCE77</td>
<td>UPNONCE76</td>
<td>UPNONCE75</td>
<td>UPNONCE74</td>
<td>UPNONCE73</td>
<td>UPNONCE72</td>
</tr>
</tbody>
</table>

bit 7 - 0

Legend:
- **R** = Readable bit
- **W** =Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **’1’** = Bit is set
- **’0’** = Bit is cleared
- **x** = Bit is unknown

bit 7-0

UPNONCE<79:72>: Upper Nonce bits
13-byte nonce value used in security.
REGISTER 2-103: UPNONCE10: UPPER NONCE SECURITY 10 REGISTER (ADDRESS: 0x24A)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE87</td>
<td>UPNONCE86</td>
<td>UPNONCE85</td>
<td>UPNONCE84</td>
<td>UPNONCE83</td>
<td>UPNONCE82</td>
<td>UPNONCE81</td>
<td>UPNONCE80</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **'1'** = Bit is set
- **'0'** = Bit is cleared
- **x** = Bit is unknown

<table>
<thead>
<tr>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE<87:80>: Upper Nonce bits</td>
</tr>
<tr>
<td>13-byte nonce value used in security.</td>
</tr>
</tbody>
</table>

REGISTER 2-104: UPNONCE11: UPPER NONCE SECURITY 11 REGISTER (ADDRESS: 0x24B)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE95</td>
<td>UPNONCE94</td>
<td>UPNONCE93</td>
<td>UPNONCE92</td>
<td>UPNONCE91</td>
<td>UPNONCE90</td>
<td>UPNONCE89</td>
<td>UPNONCE88</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **'1'** = Bit is set
- **'0'** = Bit is cleared
- **x** = Bit is unknown

<table>
<thead>
<tr>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE<95:88>: Upper Nonce bits</td>
</tr>
<tr>
<td>13-byte nonce value used in security.</td>
</tr>
</tbody>
</table>
REGISTER 2-105: UPNONCE12: UPPER NONCE SECURITY 12 REGISTER (ADDRESS: 0x24C)

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPNONCE103</td>
<td>UPNONCE102</td>
<td>UPNONCE101</td>
<td>UPNONCE100</td>
<td>UPNONCE99</td>
<td>UPNONCE98</td>
<td>UPNONCE97</td>
<td>UPNONCE96</td>
</tr>
</tbody>
</table>

bit 7-0 UPNONCE<103:96>: Upper Nonce bits
13-byte nonce value used in security.

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
3.0 FUNCTIONAL DESCRIPTION

3.1 Reset
The MRF24J40 has four Reset types:

- **Power-on Reset** – The MRF24J40 has built-in Power-on Reset circuitry that will automatically reset all control registers when power is applied. It is recommended to delay 2 ms after a Reset before accessing the MRF24J40 to allow the RF circuitry to start up and stabilize.

- **RESET Pin** – The MRF24J40 can be reset by the host microcontroller by asserting the RESET pin 13 low. All control registers will be reset. The MRF24J40 will be released from Reset approximately 250 μs after RESET is released. The RESET pin has an internal weak pull-up resistor. It is recommended to delay 2 ms after a Reset before accessing the MRF24J40 to allow the RF circuitry to start up and stabilize.

- **RF State Machine Reset** – Perform an RF State Machine Reset by setting the RFRST (0x2A<2>) bit to ‘1’. The MAC circuitry is reset by setting the RSTMAC (0x2A<0>) bit to ‘1’. All control registers will be reset. The Resets can be performed individually or together. The bit(s) will be automatically cleared to ‘0’ by hardware. No delay is necessary after a Software Reset.

- **Software Reset** – A Software Reset can be performed by the host microcontroller. The power management circuitry is reset by setting the RSTPWR (0x2A<2>) bit to ‘1’. The control registers retain their values. The baseband circuitry is reset by setting the RSTBB (0x2A<1>) bit to ‘1’. The control registers retain their values. The MAC circuitry is reset by setting the RSTMAC (0x2A<0>) bit to ‘1’. All control registers will be reset. The Resets can be performed individually or together. The bit(s) will be automatically cleared to ‘0’ by hardware. No delay is necessary after a Software Reset.

Note: The RF state machine should be Reset after the frequency channel has been changed (RFCON0 0x200).

TABLE 3-1: REGISTERS ASSOCIATED WITH RESET

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2A</td>
<td>SOFTRST</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RSTPWR</td>
<td>RSTBB</td>
<td>RSTMAC</td>
</tr>
<tr>
<td>0x36</td>
<td>RFCTL</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>WAKECNT8</td>
<td>WAKECNT7</td>
<td>RFRST</td>
<td>RFTXMODE</td>
<td>RFRXMODE</td>
</tr>
</tbody>
</table>
3.2 Initialization

Certain control register values must be initialized for basic operations. These values differ from the Power-on Reset values and provide improved operational parameters. These settings are normally made once after a Reset. After initialization, MRF24J40 features can be configured for the application. The steps for initialization are shown in Example 3-1.

EXAMPLE 3-1: INITIALIZING THE MRF24J40

Example steps to initialize the MRF24J40:

1. SOFTRST (0x2A) = 0x07 – Perform a software Reset. The bits will be automatically cleared to ‘0’ by hardware.
2. PACON2 (0x18) = 0x98 – Initialize FIFOEN = 1 and TXONTS = 0x6.
3. TXSTBL (0x2E) = 0x95 – Initialize RFSTBL = 0x9.
4. RFCON0 (0x200) = 0x03 – Initialize RFCON = 0x03.
5. RFCON1 (0x201) = 0x01 – Initialize VCOOPT = 0x02.
6. RFCON2 (0x202) = 0x80 – Enable PLL (Pellen = 1).
7. RFCON6 (0x206) = 0x90 – Initialize TXFIL = 1 and 20MRECVR = 1.
8. RFCON7 (0x207) = 0x80 – Initialize SLPCLKSEL = 0x2 (100 kHz Internal oscillator).
9. RFCON8 (0x208) = 0x10 – Initialize RFVC = 1.
10. SLPCON1 (0x220) = 0x21 – Initialize CLKOUTEN = 1 and SLPCLKDIV = 0x01.

Configuration for nonbeacon-enabled devices (see Section 3.8 “Beacon-Enabled and Nonbeacon-Enabled Networks”):

11. BBREG2 (0x3A) = 0x80 – Set CCA mode to ED.
12. CCAEDTH = 0x60 – Set CCA ED threshold.
13. BBREG6 (0x3E) = 0x40 – Set appended RSSI value to RXFIFO.
14. Enable interrupts – See Section 3.3 “Interrupts”.
15. Set channel – See Section 3.4 “Channel Selection”.

Note: Maintain 0x200<3:0> = 0x03

16. Set transmitter power - See “REGISTER 2-62: RF CONTROL 3 REGISTER (ADDRESS: 0x203)”.
17. RFCTL (0x36) = 0x04 – Reset RF state machine.
18. RFCTL (0x36) = 0x00.
19. Delay at least 192 μs.

TABLE 3-2: REGISTERS ASSOCIATED WITH INITIALIZATION

<table>
<thead>
<tr>
<th>Addr</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x18</td>
<td>PACON2</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2A</td>
<td>SOFTRST</td>
<td></td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2E</td>
<td>TXSTBL</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x201</td>
<td>RFCON1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x202</td>
<td>RFCON2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x206</td>
<td>RFCON6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x207</td>
<td>RFCON7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x208</td>
<td>RFCON8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x220</td>
<td>SLPCON1</td>
<td>r</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 Interrupts

The MRF24J40 has one interrupt (INT) pin 16 that signals one of eight interrupt events to the host microcontroller. The interrupt structure is shown in Figure 3-1. Interrupts are enabled via the INTCON (0x32) register. Interrupt flags are located in the INTSTAT (0x31) register. The INTSTAT register clears-to-zero upon read. Therefore, the host microcontroller should read and store the INTSTAT register and check the bits to determine which interrupt occurred. The INT pin will continue to signal an interrupt until the INTSTAT register is read. The edge polarity of the INT pin is configured via the INTEGE bit in the SLPCON0 (0x211<1>) register.

Note 1: The INTEGE polarity defaults to:
0 = Falling Edge. Ensure that the interrupt polarity matches the interrupt pin polarity of the host microcontroller.

2: The INT pin will remain high or low, depending on INTEGE polarity setting, until INTSTAT register is read.

FIGURE 3-1: MRF24J40 INTERRUPT LOGIC

TABLE 3-3: REGISTERS ASSOCIATED WITH INTERRUPTS

<table>
<thead>
<tr>
<th>Addr</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x31</td>
<td>INSTAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x32</td>
<td>INTCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x211</td>
<td>SLPCON0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4 Channel Selection

The MRF24J40 is capable of selecting one of sixteen channel frequencies in the 2.4 GHz band. The desired channel is selected by configuring the CHANNEL bits in the RFCON0 (0x200<7:4>) register. See Table 3-4 for the RFCON0 register setting for channel number and frequency.

Note: Perform an RF State Machine Reset (see Section 3.1 “Reset”) after a channel frequency change. Then, delay at least 192 μs after the RF State Machine Reset, to allow the RF circuitry to calibrate.

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Frequency</th>
<th>Set Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2.405 GHz</td>
<td>0x03</td>
</tr>
<tr>
<td>12</td>
<td>2.410 GHz</td>
<td>0x13</td>
</tr>
<tr>
<td>13</td>
<td>2.415 GHz</td>
<td>0x23</td>
</tr>
<tr>
<td>14</td>
<td>2.420 GHz</td>
<td>0x33</td>
</tr>
<tr>
<td>15</td>
<td>2.425 GHz</td>
<td>0x43</td>
</tr>
<tr>
<td>16</td>
<td>2.430 GHz</td>
<td>0x53</td>
</tr>
<tr>
<td>17</td>
<td>2.435 GHz</td>
<td>0x63</td>
</tr>
<tr>
<td>18</td>
<td>2.440 GHz</td>
<td>0x73</td>
</tr>
<tr>
<td>19</td>
<td>2.445 GHz</td>
<td>0x83</td>
</tr>
<tr>
<td>20</td>
<td>2.450 GHz</td>
<td>0x93</td>
</tr>
<tr>
<td>21</td>
<td>2.455 GHz</td>
<td>0xA3</td>
</tr>
<tr>
<td>22</td>
<td>2.460 GHz</td>
<td>0xB3</td>
</tr>
<tr>
<td>23</td>
<td>2.465 GHz</td>
<td>0xC3</td>
</tr>
<tr>
<td>24</td>
<td>2.470 GHz</td>
<td>0xD3</td>
</tr>
<tr>
<td>25</td>
<td>2.475 GHz</td>
<td>0xE3</td>
</tr>
<tr>
<td>26</td>
<td>2.480 GHz</td>
<td>0xF3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x36</td>
<td>RFCTL</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>WAKECNT8</td>
<td>WAKECNT7</td>
<td>RFRST</td>
<td>RFTX- MODE</td>
<td>RFRX- MODE</td>
</tr>
<tr>
<td>0x200</td>
<td>RFCON0</td>
<td>CHANNEL3</td>
<td>CHANNEL2</td>
<td>CHANNEL1</td>
<td>CHANNEL0</td>
<td>RFOPT3</td>
<td>RFOPT2</td>
<td>RFOPT1</td>
<td>RFOPT0</td>
</tr>
</tbody>
</table>
3.5 Clear Channel Assessment (CCA)

The CCA signal is an indication to the MAC layer from the PHY layer as to whether the medium is busy or idle.

The MRF24J40 provides three methods of performing CCA. Refer to IEEE 802.15.4-2003 Standard, Section 6.7.9 “CCA”.

3.5.1 CCA MODE 1: ENERGY ABOVE THRESHOLD

CCA reports a busy medium upon detecting energy above the Energy Detection (ED) threshold.

1. Program CCAMODE 0x3A<7:6> to the value, ’10’.
2. Program CCAEDTH 0x3F<7:0> with CCA ED threshold value (RSSI value).

The 8-bit CCAEDTH threshold can be mapped to a power level according to RSSI. Refer to Section 3.6 “Received Signal Strength Indicator (RSSI)/Energy Detection (ED)”.

3.5.2 CCA MODE 2: CARRIER SENSE ONLY

CCA reports a busy medium only upon detection of a signal with modulation and spreading characteristics of IEEE 802.15.4. This signal may or may not be above the ED threshold.

1. Program CCAMODE 0x3A<7:6> to the value, ’01’.
2. Program CCACSTH 0x3A<5:2> with the CCA carrier sense threshold (units).

3.5.3 CCA MODE 3: CARRIER SENSE WITH ENERGY ABOVE THRESHOLD

CCA reports a busy medium only upon detection of a signal with modulation or spreading characteristics of IEEE 802.15.4 with energy above the ED threshold.

1. Program CCAMODE 0x3A<7:6> to the value, ’11’.
2. Program CCACSTH 0x3A<5:2> with the CCA carrier sense threshold.
3. Program CCAEDTH 0x3F<7:0> with the CCA ED threshold (RSSI value).

The 8-bit CCAEDTH threshold can be mapped to a power level according to RSSI. Refer to Section 3.6 “Received Signal Strength Indicator (RSSI)/Energy Detection (ED)”.

TABLE 3-6: REGISTERS ASSOCIATED WITH CCA

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x3A</td>
<td>BBREG2</td>
<td>CCAMODE1</td>
<td>CCAMODE0</td>
<td>CCACSTH3</td>
<td>CCACSTH2</td>
<td>CCACSTH1</td>
<td>CCACSTH0</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x3F</td>
<td>CCAEDTH</td>
<td>CCAEDTH7</td>
<td>CCAEDTH6</td>
<td>CCAEDTH5</td>
<td>CCAEDTH4</td>
<td>CCAEDTH3</td>
<td>CCAEDTH2</td>
<td>CCAEDTH1</td>
<td>CCAEDTH0</td>
</tr>
</tbody>
</table>
3.6 Received Signal Strength Indicator (RSSI)/Energy Detection (ED)

RSSI/ED are an estimate of the received signal power within the bandwidth of an IEEE 802.15.4 channel. The RSSI value is an 8-bit value ranging from 0-255. The mapping between the RSSI values with the received power level is shown in Figure 3-3 and is shown in tabular form in Table 3-8. The number of symbols to average can be changed by programming the RSSINUM (TXBCON1 0x25<5:4>) bits.

The programmer can obtain the RSSI/ED value in one of two methods.

3.6.1 RSSI FIRMWARE REQUEST (RSSI MODE1)

In this mode, the host microcontroller sends a request to calculate RSSI, then waits until it is done and then reads the RSSI value. The steps are:

1. Set RSSIMODE1 0x3E<7> – Initiate RSSI calculation.
2. Wait until RSSIRDY 0x3E<0> is set to ‘1’ – RSSI calculation is complete.
3. Read RSSI 0x210<7:0> – The RSSI register contains the averaged RSSI received power level for 8 symbol periods.

3.6.2 APPENDED RSSI TO THE RECEIVED PACKET (RSSI MODE 2)

The RSSI value is appended at the end of each successfully received packet.

To enable RSSI Mode 2, set RSSIMODE2 = 1 (0x3E<6>). The RSSI value will be appended to the RXFIFO as shown in Figure 3-2.

FIGURE 3-2: PACKET FORMAT IN RX FIFO

<table>
<thead>
<tr>
<th>Frame Length</th>
<th>Header</th>
<th>Payload</th>
<th>FCS</th>
<th>LQI</th>
<th>RSSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Octet</td>
<td>N Octets</td>
<td>M Octets</td>
<td>2 Octets</td>
<td>1 Octet</td>
<td>1 Octet</td>
</tr>
</tbody>
</table>

TABLE 3-7: REGISTERS ASSOCIATED WITH RSSI/ED

<table>
<thead>
<tr>
<th>Addr. Name</th>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x25 TXBCON1</td>
<td>TXBMSK</td>
<td>WU/BCN</td>
<td>RSSINUM1</td>
<td>RSSINUM0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>0x3E BBREG6</td>
<td>RSSIMODE1</td>
<td>RSSIMODE2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RSSIRDY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x210 RSSI</td>
<td>RSSI7</td>
<td>RSSI6</td>
<td>RSSI5</td>
<td>RSSI4</td>
<td>RSSI3</td>
<td>RSSI2</td>
<td>RSSI1</td>
<td>RSSI0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 3-3: RSSI vs. RECEIVED POWER (dBm)

![Graph showing RSSI vs. Received Power (dBm)]
RSSI versus received power (dB) is shown in tabular form in Table 3-8.

TABLE 3-8: RSSI vs. RECEIVED POWER (dB)

<table>
<thead>
<tr>
<th>Received Power (dBm)</th>
<th>RSSI Value (hex)</th>
<th>RSSI Value (dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-99</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-98</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-97</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-96</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-95</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-94</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-93</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-92</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-91</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-90</td>
<td>0x00</td>
<td>0</td>
</tr>
<tr>
<td>-89</td>
<td>0x10</td>
<td>1</td>
</tr>
<tr>
<td>-88</td>
<td>0x20</td>
<td>2</td>
</tr>
<tr>
<td>-87</td>
<td>0x50</td>
<td>5</td>
</tr>
<tr>
<td>-86</td>
<td>0x90</td>
<td>9</td>
</tr>
<tr>
<td>-85</td>
<td>0xD0</td>
<td>13</td>
</tr>
<tr>
<td>-84</td>
<td>0x12</td>
<td>18</td>
</tr>
<tr>
<td>-83</td>
<td>0x17</td>
<td>23</td>
</tr>
<tr>
<td>-82</td>
<td>0x1B</td>
<td>27</td>
</tr>
<tr>
<td>-81</td>
<td>0x20</td>
<td>32</td>
</tr>
<tr>
<td>-80</td>
<td>0x25</td>
<td>37</td>
</tr>
<tr>
<td>-79</td>
<td>0x2B</td>
<td>43</td>
</tr>
<tr>
<td>-78</td>
<td>0x30</td>
<td>48</td>
</tr>
<tr>
<td>-77</td>
<td>0x35</td>
<td>53</td>
</tr>
<tr>
<td>-76</td>
<td>0x3A</td>
<td>58</td>
</tr>
<tr>
<td>-75</td>
<td>0x3F</td>
<td>63</td>
</tr>
<tr>
<td>-74</td>
<td>0x44</td>
<td>68</td>
</tr>
<tr>
<td>-73</td>
<td>0x49</td>
<td>73</td>
</tr>
<tr>
<td>-72</td>
<td>0x4E</td>
<td>78</td>
</tr>
<tr>
<td>-71</td>
<td>0x53</td>
<td>83</td>
</tr>
<tr>
<td>-70</td>
<td>0x59</td>
<td>89</td>
</tr>
<tr>
<td>-69</td>
<td>0x5F</td>
<td>95</td>
</tr>
<tr>
<td>-68</td>
<td>0x64</td>
<td>100</td>
</tr>
<tr>
<td>-67</td>
<td>0x6B</td>
<td>107</td>
</tr>
<tr>
<td>-66</td>
<td>0x6F</td>
<td>111</td>
</tr>
<tr>
<td>-65</td>
<td>0x75</td>
<td>117</td>
</tr>
<tr>
<td>-64</td>
<td>0x79</td>
<td>121</td>
</tr>
<tr>
<td>-63</td>
<td>0x7D</td>
<td>125</td>
</tr>
<tr>
<td>-62</td>
<td>0x81</td>
<td>129</td>
</tr>
<tr>
<td>-61</td>
<td>0x85</td>
<td>133</td>
</tr>
<tr>
<td>-60</td>
<td>0x8A</td>
<td>138</td>
</tr>
</tbody>
</table>

TABLE 3-8: RSSI vs. RECEIVED POWER (dB) (CONTINUED)

<table>
<thead>
<tr>
<th>Received Power (dBm)</th>
<th>RSSI Value (hex)</th>
<th>RSSI Value (dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-59</td>
<td>0x8F</td>
<td>143</td>
</tr>
<tr>
<td>-58</td>
<td>0x94</td>
<td>148</td>
</tr>
<tr>
<td>-57</td>
<td>0x99</td>
<td>153</td>
</tr>
<tr>
<td>-56</td>
<td>0x9F</td>
<td>159</td>
</tr>
<tr>
<td>-55</td>
<td>0xA5</td>
<td>165</td>
</tr>
<tr>
<td>-54</td>
<td>0xAA</td>
<td>170</td>
</tr>
<tr>
<td>-53</td>
<td>0xB0</td>
<td>176</td>
</tr>
<tr>
<td>-52</td>
<td>0xB7</td>
<td>183</td>
</tr>
<tr>
<td>-51</td>
<td>0xBC</td>
<td>188</td>
</tr>
<tr>
<td>-50</td>
<td>0xC1</td>
<td>193</td>
</tr>
<tr>
<td>-49</td>
<td>0xC6</td>
<td>198</td>
</tr>
<tr>
<td>-48</td>
<td>0xCB</td>
<td>203</td>
</tr>
<tr>
<td>-47</td>
<td>0xCF</td>
<td>207</td>
</tr>
<tr>
<td>-46</td>
<td>0xD4</td>
<td>212</td>
</tr>
<tr>
<td>-45</td>
<td>0xD8</td>
<td>216</td>
</tr>
<tr>
<td>-44</td>
<td>0xDD</td>
<td>221</td>
</tr>
<tr>
<td>-43</td>
<td>0xE1</td>
<td>225</td>
</tr>
<tr>
<td>-42</td>
<td>0xE4</td>
<td>228</td>
</tr>
<tr>
<td>-41</td>
<td>0xE9</td>
<td>233</td>
</tr>
<tr>
<td>-40</td>
<td>0xEF</td>
<td>239</td>
</tr>
<tr>
<td>-39</td>
<td>0xF5</td>
<td>245</td>
</tr>
<tr>
<td>-38</td>
<td>0xFA</td>
<td>250</td>
</tr>
<tr>
<td>-37</td>
<td>0xFD</td>
<td>253</td>
</tr>
<tr>
<td>-36</td>
<td>0xFE</td>
<td>254</td>
</tr>
<tr>
<td>-35</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-34</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-33</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-32</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-31</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-30</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-29</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-28</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-27</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-26</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-25</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-24</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-23</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-22</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-21</td>
<td>0xFF</td>
<td>255</td>
</tr>
<tr>
<td>-20</td>
<td>0xFF</td>
<td>255</td>
</tr>
</tbody>
</table>
3.7 Link Quality Indication (LQI)

Link Quality Indication (LQI) is a characterization of strength or quality of a received packet. Several metrics, for example, RSSI, Signal to Noise Ratio (SNR), RSSI combined with SNR, etc., can be used for measuring link quality. Using RSSI or SNR alone may not be the best way to estimate the quality of a link. The received RSSI value will be a very high value if a packet is received with greater signal strength or even if an interferer is present in the channel. Hence, for better approximation of link quality, the MRF24J40 reports the correlation degree between spreading sequences and the incoming chips during the reception of a packet. This correlation value is directly mapped to a range of 0-255 (256 values), where an LQI value of 0 indicates that the quality of the link is very low, and an LQI value of 255 indicates the quality of the link is very high. The correlation degree between spreading sequences and incoming chips is computed over a period of 3 symbol periods during the reception of the preamble of a packet.

The LQI is reported along with each received packet in the RX FIFO as shown in Figure 3-2.

3.8 Beacon-Enabled and Nonbeacon-Enabled Networks

The IEEE 802.15.4 Standard defines two modes of operation:
• Beacon-enabled network
• Nonbeacon-enabled network

3.8.1 BEACON-ENABLED NETWORK

In a beacon-enabled network, beacons will be transmitted periodically by the PAN coordinator. These beacons are mainly used to provide synchronization services between all the devices in the PAN and also to support other extended features, like Guaranteed Time Slots (GTS), a Quality of Service (QoS) mechanism for the IEEE 802.15.4 Standard. The PAN coordinator defines the structure of the superframe using beacons.
3.8.1.1 Superframe Structure

The superframe structure is shown in Figure 3-4. A superframe is bounded by the transmission of a beacon frame and can have an active and inactive portion. The coordinator will interact with its PAN only during the active portion of the superframe, and during the inactive portion of the superframe, the coordinator can go to a low-power mode. The active portion of the superframe is divided into 16 equally spaced slots and is composed of three parts: a beacon, a Contention Access Period (CAP) and an optional Contention Free Period (CFP). The structure of the superframe depends on the values of Beacon Order (BO) and Superframe Order (SO). The CFP, if present, follows immediately after the CAP and extends to the end of active portion of the superframe. Any allocated GTSs shall be located in the CFP of the active portion of the superframe.

All the frames transmitted in the CAP, except Acknowledgement frames and data frames that immediately follow the data request command, must use slotted CSMA-CA. Refer to Section 3.9 “Carrier Sense Multiple Access-Collision Avoidance (CSMA-CA) Algorithm” for more information.

FIGURE 3-4: SUPERFRAME STRUCTURE
3.8.1.2 BO and SO

Values of Beacon Order (BO) and Superframe Order (SO) determine the Beacon Interval (BI) and Superframe Duration (SD).

Beacon Interval (BI) in terms of BO can be expressed as:

\[BI = a\text{BaseSuperframeDuration} \times 2^{BO} \]

Similarly, Superframe Duration (SD) in terms of SO can be expressed as:

\[SD = a\text{BaseSuperframeDuration} \times 2^{SO} \]

where \(a\text{BaseSuperframeDuration} \) = 960 symbols.

BO and SO can be configured by programming the BO (0x10<7:4>) bits and SO (0x10<3:0>) bits in the ORDER register. For beacon-enabled networks, the values of BO and SO should be in the range, \(0 \leq SO \leq BO \leq 14 \). If the values of BO and SO are equal, then the superframe does not have any inactive portion. A Beacon Interval can be as short as 15 ms or as long as 251 seconds based on the values of BO and SO.

3.8.1.3 GTS

If a device wants to transmit or receive during CFP, it sends out a “GTS request” in the CAP to the PAN coordinator. The PAN coordinator broadcasts the address of the device number for that device in the beacon frame if resources are available.

To support GTS operation, MRF24J40 uses TXGTS1FIFO and TXGTS2FIFO. The TXGTS1FIFO and TXGTS2FIFO are ping-pong FIFOs and can be assigned to different GTS slots or to the same slots. If both are assigned to the same slot, they take turns for transmission within that slot. TXGTS1FIFO and TXGTS2FIFO can be triggered ahead of their slot time, but transmission from the FIFO will take place exactly at the assigned slot time.

Refer to Section 3.12 “Transmission” for information on how to transmit a data frame using the TXGTSxFIFOs.

FIGURE 3-5: GTSFIFO STATE DIAGRAM

![GTSFIFO State Diagram]

- GTSSWITCH = 1
 - Switch TXGTSxFIFO if Transmit Error
 - Wait for GTS Slot
 - Transmit Complete or Transmit Error (clear TXG1TRIG)
 - TXGTS1FIFO
 - Transmit Complete or Transmit Error (clear TXG2TRIG)
 - TXGTS2FIFO
 - Wait for GTS Slot

- GTSSWITCH = 0
 - Hold and wait TXGTSxFIFO if Transmit Error
 - Wait for GTS Slot
 - Transmit Error (clear TXG1TRIG and TXG2TRIG)
 - Hold and Wait until Next GTS
 - Transmit Error (clear TXG1TRIG and TXG2TRIG)
 - TXGTS1FIFO
 - Transmit Complete
 - TXGTS2FIFO
 - Wait for GTS Slot

3.8.1.4 Configuring Beacon-Enabled PAN Coordinator

The following steps configure the MRF24J40 as a coordinator in a beacon-enabled network:

1. Set the PANCOORD (RXMCR 0x00<3>) bit = 1 to configure as PAN coordinator.
2. Set the SLOTTED (TXMCR 0x11<5>) bit = 1 to use Slotted CSMA-CA mode.
3. Load the beacon frame into the TXBFIFO (0x080-0xFF).
4. Set the TXBMSK (TXBCON1 0x25<7>) bit = 1 to mask the beacon interrupt mask.
5. Set INTL (WAKECON 0x22<5:0>) value to 0x03.
6. Program the CAP end slot (ESLOTG1 0x13<3:0>) value. If the coordinator supports Guaranteed Time Slot operation, refer to Section 3.8.1.5 “Configuring Beacon-Enabled GTS Settings for PAN Coordinator” below.
7. Calibrate the Sleep Clock (SLPCLK) frequency. Refer to Section 3.15.1.3 “Sleep Mode Counters”.
8. Set WAKECNT (SLPACK 0x35<6:0>) value = 0x5F to set the main oscillator (20 MHz) start-up timer value.
9. Program the Beacon Interval into the Main Counter, MAINCNT (0x229<1:0>, 0x228, 0x227, 0x226), and Remain Counter, REMCNT (0x225, 0x224), according to BO and SO values. Refer to Section 3.15.1.3 “Sleep Mode Counters”.
10. Configure the BO (ORDER 0x10<7:4>) and SO (ORDER 0x10<3:0>) values. After configuring BO and SO, the beacon frame will be sent immediately.

3.8.1.5 Configuring Beacon-Enabled GTS Settings for PAN Coordinator

The following steps configure the MRF24J40 as a coordinator in a beacon-enabled network with Guaranteed Time Slots:

1. Set the GTSON (GATECLK 0x26 <3>) bit = 1 to enable the GTS FIFO clock.
2. Based on the number of GTSs that are active for the current superframe, program the end slot value of each GTS into the ESLOT registers as shown in Table 3-9.

<table>
<thead>
<tr>
<th>TABLE 3-9: PROGRAMMING END SLOT VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTS Number</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>CAP</td>
</tr>
<tr>
<td>GTS1</td>
</tr>
<tr>
<td>GTS2</td>
</tr>
<tr>
<td>GTS3</td>
</tr>
<tr>
<td>GTS4</td>
</tr>
<tr>
<td>GTS5</td>
</tr>
<tr>
<td>GTS6</td>
</tr>
<tr>
<td>GTS7</td>
</tr>
</tbody>
</table>

3. Set the GTSSWITCH (TXPEND 0x21<1>) bit = 1 so that if a TXGTS1FIFO or TXGTS2FIFO transmission error occurs, it will switch to another TXGTSxFIFO.
3.8.1.6 Configuring Beacon-Enabled Device

The following steps configure the MRF24J40 as a device in a beacon-enabled network:

1. Set the SLOTTED (TXMCR 0x11<5>) bit = 1 to use Slotted CSMA-CA mode.
2. Set the OFFSET (FRMOFFSET 0x23<7:0>) value = 0x15 for optimum timing alignment.
3. Calibrate the Sleep Clock (SLPCLK) frequency. Refer to Section 3.15.1.2 “Sleep Clock Calibration”.
4. Program the associated coordinator’s 64-bit extended address to the ASSOEADR registers (0x230-0x237).
5. Program the associated coordinator’s 16-bit short address to the ASSOSADR registers (0x238-0x239).

Note: The device will align its beacon frame with the associated coordinator’s beacon frame only when the source address matches the ASSOEADR or ASSOSADR value.

6. Parse the received associated coordinator’s beacon frame and extract the values of BO and SO. Calculate the inactive period and program the Main Counter, MAINCNT (0x229<1:0>, 0x226, 0x227, 0x226), and Remain Counter, REMCNT (0x225, 0x224), according to the BO and SO values. Refer to Section 3.15.1.3 “Sleep Mode Counters”.
7. Program the CAP end slot (ESLOTG1 0x13<3:0>) value.

3.8.1.7 Configuring Beacon-Enabled GTS Settings for Device

The following steps configure the MRF24J40 as a device in a beacon-enabled network with Guaranteed Time Slots:

1. Set the GTSON (GATECLK 0x26<3>) bit = 1 to enable the GTS FIFO clock.
2. Parse the received beacon frame and obtain the GTS allocation information. Program the end slot value of the CAP and each GTS into the ESLOT registers, as shown in Table 3-9.
3. Set the GTSSWITCH (TXPEND 0x21<1>) bit = 1 so that if a TXGTS1FIFO or TXGTS2FIFO transmission error occurs, it will switch to another TXGTSxFIFO.

3.8.2 NONBEACON-ENABLED NETWORK

A nonbeacon-enabled network does not transmit a beacon unless it receives a beacon request, and hence, does not have any superframe structure. A nonbeacon-enabled network uses unslotted CSMA-CA to access the medium. The unslotted CSMA-CA is explained in Section 3.9 “Carrier Sense Multiple Access-Collision Avoidance (CSMA-CA) Algorithm”. For nonbeacon-enabled networks, both BO and SO are set to 15. Guaranteed Time Slots (GTS) are not supported, and generally, devices require less computing power as there are no strict timing requirements that need to be met.

3.8.2.1 Configuring Nonbeacon-Enabled PAN Coordinator

The following steps configure the MRF24J40 as a coordinator in a nonbeacon-enabled network:

1. Set the PANCOORD (RXMCR 0x00<3>) bit = 1 to configure as the PAN coordinator.
2. Clear the SLOTTED (TXMCR 0x11<5>) bit = 0 to configure Unslotted CSMA-CA mode.
3. Configure BO (ORDER 0x10<7:4>) value = 0xF.
4. Configure SO (ORDER 0x10<3:0>) value = 0xF.

3.8.2.2 Configuring Nonbeacon-Enabled Device

The following steps configure the MRF24J40 as a device in a nonbeacon-enabled network:

1. Clear the PANCOORD (RXMCR 0x00<3>) bit = 0 to configure as device.
2. Clear the SLOTTED (TXMCR 0x11<5>) bit = 0 to use Unslotted CSMA-CA mode.
TABLE 3-10: REGISTERS ASSOCIATED WITH SETTING UP BEACON-ENABLED AND NONBEACON-ENABLED NETWORKS

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>RXMCR</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>PANCOORD</td>
<td>COORD</td>
<td>ERRPKT</td>
</tr>
<tr>
<td>0x10</td>
<td>ORDER</td>
<td>BO3</td>
<td>BO2</td>
<td>BO1</td>
<td>BO0</td>
<td>SO3</td>
<td>SO2</td>
<td>SO1</td>
<td>SO0</td>
</tr>
<tr>
<td>0x11</td>
<td>TXMCR</td>
<td>NOCSMA</td>
<td>BATLIFEST</td>
<td>SLOTTED</td>
<td>MACMINB1</td>
<td>MACMINB0</td>
<td>CSMABF2</td>
<td>CSMABF1</td>
<td>CSMABF0</td>
</tr>
<tr>
<td>0x13</td>
<td>ESLOTG1</td>
<td>GTS1-3</td>
<td>GTS1-2</td>
<td>GTS1-1</td>
<td>GTS1-0</td>
<td>CAP3</td>
<td>CAP2</td>
<td>CAP1</td>
<td>CAP0</td>
</tr>
<tr>
<td>0x1E</td>
<td>ESLOTG23</td>
<td>GTS3-3</td>
<td>GTS3-2</td>
<td>GTS3-1</td>
<td>GTS3-0</td>
<td>GTS2-3</td>
<td>GTS2-2</td>
<td>GTS2-1</td>
<td>GTS2-0</td>
</tr>
<tr>
<td>0x1F</td>
<td>ESLOTG45</td>
<td>GTS5-3</td>
<td>GTS5-2</td>
<td>GTS5-1</td>
<td>GTS5-0</td>
<td>GTS4-3</td>
<td>GTS4-2</td>
<td>GTS4-1</td>
<td>GTS4-0</td>
</tr>
<tr>
<td>0x20</td>
<td>ESLOTG67</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>GTS6-3</td>
<td>GTS6-2</td>
<td>GTS6-1</td>
<td>GTS6-0</td>
</tr>
<tr>
<td>0x21</td>
<td>TXPEND</td>
<td>MLIFS5</td>
<td>MLIFS4</td>
<td>MLIFS3</td>
<td>MLIFS2</td>
<td>MLIFS1</td>
<td>MLIFS0</td>
<td>GTSSWITCH</td>
<td>FPACK</td>
</tr>
<tr>
<td>0x22</td>
<td>WAKECON</td>
<td>IMMWAKE</td>
<td>REGWAKE</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
</tr>
<tr>
<td>0x23</td>
<td>FRMOFFSET</td>
<td>OFFSET7</td>
<td>OFFSET6</td>
<td>OFFSET5</td>
<td>OFFSET4</td>
<td>OFFSET3</td>
<td>OFFSET2</td>
<td>OFFSET1</td>
<td>OFFSET0</td>
</tr>
<tr>
<td>0x25</td>
<td>TXBCON1</td>
<td>TX8MSK</td>
<td>WD8CN</td>
<td>RSSINUM1</td>
<td>RSSINUM0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x26</td>
<td>GATECL</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>GTSON</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x35</td>
<td>SLPACK</td>
<td>SLPACK</td>
<td>WAKECNT6</td>
<td>WAKECNT5</td>
<td>WAKECNT4</td>
<td>WAKECNT3</td>
<td>WAKECNT2</td>
<td>WAKECNT1</td>
<td>WAKECNT0</td>
</tr>
<tr>
<td>0x24</td>
<td>REMCNTL</td>
<td>REMCNT7</td>
<td>REMCNT6</td>
<td>REMCNT5</td>
<td>REMCNT4</td>
<td>REMCNT3</td>
<td>REMCNT2</td>
<td>REMCNT1</td>
<td>REMCNT0</td>
</tr>
<tr>
<td>0x25</td>
<td>REMCNTH</td>
<td>REMCNT15</td>
<td>REMCNT14</td>
<td>REMCNT13</td>
<td>REMCNT12</td>
<td>REMCNT11</td>
<td>REMCNT10</td>
<td>REMCNT9</td>
<td>REMCNT8</td>
</tr>
<tr>
<td>0x26</td>
<td>MAINCNT0</td>
<td>MAINCNT7</td>
<td>MAINCNT6</td>
<td>MAINCNT5</td>
<td>MAINCNT4</td>
<td>MAINCNT3</td>
<td>MAINCNT2</td>
<td>MAINCNT1</td>
<td>MAINCNT0</td>
</tr>
<tr>
<td>0x27</td>
<td>MAINCNT1</td>
<td>MAINCNT15</td>
<td>MAINCNT14</td>
<td>MAINCNT13</td>
<td>MAINCNT12</td>
<td>MAINCNT11</td>
<td>MAINCNT10</td>
<td>MAINCNT9</td>
<td>MAINCNT8</td>
</tr>
<tr>
<td>0x28</td>
<td>MAINCNT2</td>
<td>MAINCNT23</td>
<td>MAINCNT22</td>
<td>MAINCNT21</td>
<td>MAINCNT20</td>
<td>MAINCNT19</td>
<td>MAINCNT18</td>
<td>MAINCNT17</td>
<td>MAINCNT16</td>
</tr>
<tr>
<td>0x29</td>
<td>MAINCNT3</td>
<td>STARTCNT</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>MAINCNT25</td>
<td>MAINCNT24</td>
<td>MAINCNT23</td>
</tr>
<tr>
<td>0x30</td>
<td>ASSOEADR0</td>
<td>ASSOEADR7</td>
<td>ASSOEADR6</td>
<td>ASSOEADR5</td>
<td>ASSOEADR4</td>
<td>ASSOEADR3</td>
<td>ASSOEADR2</td>
<td>ASSOEADR1</td>
<td>ASSOEADR0</td>
</tr>
<tr>
<td>0x31</td>
<td>ASSOEADR1</td>
<td>ASSOEADR15</td>
<td>ASSOEADR14</td>
<td>ASSOEADR13</td>
<td>ASSOEADR12</td>
<td>ASSOEADR11</td>
<td>ASSOEADR10</td>
<td>ASSOEADR9</td>
<td>ASSOEADR8</td>
</tr>
<tr>
<td>0x32</td>
<td>ASSOEADR2</td>
<td>ASSOEADR23</td>
<td>ASSOEADR22</td>
<td>ASSOEADR21</td>
<td>ASSOEADR20</td>
<td>ASSOEADR19</td>
<td>ASSOEADR18</td>
<td>ASSOEADR17</td>
<td>ASSOEADR16</td>
</tr>
<tr>
<td>0x33</td>
<td>ASSOEADR3</td>
<td>ASSOEADR31</td>
<td>ASSOEADR30</td>
<td>ASSOEADR29</td>
<td>ASSOEADR28</td>
<td>ASSOEADR27</td>
<td>ASSOEADR26</td>
<td>ASSOEADR25</td>
<td>ASSOEADR24</td>
</tr>
<tr>
<td>0x34</td>
<td>ASSOEADR4</td>
<td>ASSOEADR39</td>
<td>ASSOEADR38</td>
<td>ASSOEADR37</td>
<td>ASSOEADR36</td>
<td>ASSOEADR35</td>
<td>ASSOEADR34</td>
<td>ASSOEADR33</td>
<td>ASSOEADR32</td>
</tr>
<tr>
<td>0x35</td>
<td>ASSOEADR5</td>
<td>ASSOEADR47</td>
<td>ASSOEADR46</td>
<td>ASSOEADR45</td>
<td>ASSOEADR44</td>
<td>ASSOEADR43</td>
<td>ASSOEADR42</td>
<td>ASSOEADR41</td>
<td>ASSOEADR40</td>
</tr>
<tr>
<td>0x36</td>
<td>ASSOEADR6</td>
<td>ASSOEADR55</td>
<td>ASSOEADR54</td>
<td>ASSOEADR53</td>
<td>ASSOEADR52</td>
<td>ASSOEADR51</td>
<td>ASSOEADR50</td>
<td>ASSOEADR49</td>
<td>ASSOEADR48</td>
</tr>
<tr>
<td>0x37</td>
<td>ASSOEADR7</td>
<td>ASSOEADR63</td>
<td>ASSOEADR62</td>
<td>ASSOEADR61</td>
<td>ASSOEADR60</td>
<td>ASSOEADR59</td>
<td>ASSOEADR58</td>
<td>ASSOEADR57</td>
<td>ASSOEADR56</td>
</tr>
<tr>
<td>0x38</td>
<td>ASSOSADR0</td>
<td>ASSOSADR7</td>
<td>ASSOSADR6</td>
<td>ASSOSADR5</td>
<td>ASSOSADR4</td>
<td>ASSOSADR3</td>
<td>ASSOSADR2</td>
<td>ASSOSADR1</td>
<td>ASSOSADR0</td>
</tr>
<tr>
<td>0x39</td>
<td>ASSOSADR1</td>
<td>ASSOSADR15</td>
<td>ASSOSADR14</td>
<td>ASSOSADR13</td>
<td>ASSOSADR12</td>
<td>ASSOSADR11</td>
<td>ASSOSADR10</td>
<td>ASSOSADR9</td>
<td>ASSOSADR8</td>
</tr>
</tbody>
</table>
3.9 Carrier Sense Multiple Access-Collision Avoidance (CSMA-CA) Algorithm

MRF24J40 supports both unslotted and slotted CSMA-CA mechanisms, as defined in the IEEE 802.15.4 Standard. In both modes, the CSMA-CA algorithm is implemented using units of time called backoff periods. In slotted CSMA-CA, the backoff period boundaries of every device on the PAN shall be aligned with the superframe slot boundaries of the PAN coordinator. In unslotted CSMA-CA, the backoff periods of one device are not related in time to the backoff periods of any other device in the PAN. Refer to IEEE 802.15.4-2003, Section 7.5.1.3 “The CSMA-CA Algorithm” for more information. This section covers the two modes and their settings.

Note: Acknowledgment and beacon frames are sent without using a CSMA-CA mechanism.

3.9.1 UNSLOTTED CSMA-CA MODE

Figure 3-6 shows the unslotted CSMA-CA algorithm. This mode is used in a nonbeacon-enabled network where the backoff periods of one device are not related in time to the backoff periods of any other device in the network. Refer to IEEE 802.15.4-2003, Section 7.5.1.3 “The CSMA-CA Algorithm” for more information.

Configuring the MRF24J40 for nonbeacon-enabled network operation is covered in Section 3.8.2 “Nonbeacon-Enabled Network”.

FIGURE 3-6: UNSLOTTED CSMA-CA ALGORITHM

```
Start

NB = 0, BE = macMinBE

Delay for Random (2^BE – 1) Backoff Periods

Perform CCA

Channel Idle?

Y

NB = NB + 1, BE = min(BE + 1, aMaxBE)

N

macMaxCSMABackoffs

CBMF (TXMCR 0x11<2:0>)

FAILURE
(Report Channel Access Failure to Host Microcontroller)
CCAFail (TXSTAT 0x24<5>)

SUCCESS
(Transmit Pending Packet)
TXNSTAT (TXSTAT 0x24<0>)

macMinBE
MACMINBE (TXMCR 0x11<4:3>)

N

macMaxCSMABackoffs

CBMF (TXMCR 0x11<2:0>)

FAILURE
(Report Channel Access Failure to Host Microcontroller)
CCAFail (TXSTAT 0x24<5>)

SUCCESS
(Transmit Pending Packet)
TXNSTAT (TXSTAT 0x24<0>)
```

© 2010 Microchip Technology Inc.
To configure the MRF24J40 for Unslotted CSMA-CA mode, clear SLOTTED (TXMCR 0x11<5>) bit = 0.

The `macMinBE` and `macMaxCSMABackoff` values in the MRF24J40 are set to the IEEE 802.15.4 Standard defaults. To program their values:

- `macMinBE` – Program MACMINBE (TXMCR 0x11<4:3>) bits to a value between 0 and 3 (the IEEE 802.15.4 Standard default is 3).
- `macMaxCSMABackoff` – Program CSMABF (TXMCR 0x11<2:0>) bits to a value between 0 and 5 (the IEEE 802.15.4 Standard default is 4).

FIGURE 3-7: SLOTTED CSMA-CA ALGORITHM

![Diagram of the slotted CSMA-CA algorithm](image)

3.9.2 SLOTTED CSMA-CA MODE

Figure 3-7 shows the slotted CSMA-CA algorithm. This mode is used on a beacon-enabled network where the backoff period boundaries of every device on the network shall be aligned with the superframe slot boundaries of the PAN coordinator. Refer to IEEE 802.15.4-2003, Section 7.5.1.3 “The CSMA-CA Algorithm” for more information.

Configuring the MRF24J40 for beacon-enabled network operation is covered in Section 3.8.1 “Beacon-Enabled Network”.
To configure the MRF24J40 for Slotted CSMA-CA mode, set SLOTTED (TXMCR 0x11<5>) bit = 1.

To program the battery life extension bit in the Slotted CSMA-CA mode, set BATLIFEXT (TXMCR 0x11<6>) bit = 1.

The \textit{macMinBE} and \textit{macMaxCSMABackoff} values are set to the IEEE 802.15.4 Standard defaults. To change their values:

- \textit{macMinBE} – Program MACMINBE (TXMCR 0x11<4:3>) bits to a value between 0 and 3 (the default is 3).
- \textit{macMaxCSMABackoff} – Program CSMABF (TXMCR 0x11<2:0>) bits to a value between 0 and 5 (the default is 4).

\begin{table}[!h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
Addr & Name & Bit 7 & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 \\
\hline
0x11 & TXMCR & NOCSMA & BATLIFEXT & SLOTTED & MACMINBE1 & MACMINB0 & CSMABF2 & CSMABF1 & CSMABF0 \\
\hline
\end{tabular}
\caption{Registers Associated with CSMA-CA}
\end{table}
3.10 Interframe Spacing (IFS)

Interframe Spacing (IFS) allows the MAC sublayer time to process data received by the PHY. The length of the IFS period depends on the size of the frame that is to be transmitted. Frames up to \(a_{\text{MaxSIFSFrameSize}} \) (18 octets) in length shall be followed by a SIFS period of at least \(a_{\text{MinSIFSPeriod}} \) (12 symbols). Frames with lengths greater than \(a_{\text{MaxSIFSFrameSize}} \) shall be followed by a LIFS period of at least \(a_{\text{MinLIFSPeriod}} \) (40 symbols). If the transmission requires an Acknowledgment, the IFS shall follow the Acknowledgment frame. Figure 3-8 shows the relationship between frames and IFS periods. Refer to IEEE 802.15.4-2003, Section 7.5.1.2 "IFS" for more information.

The IEEE 802.15.4 Specification defines \(a_{\text{MinSIFSPeriod}} \) as a constant value of 12 symbol periods. The \(a_{\text{MinSIFSPeriod}} \) can be programmed by the MSIFS (TXSTBL 0x2E<3:0>) and RFSTBL (TXSTBL 0x2E<7:4>) bits, where \(a_{\text{MinSIFSPeriod}} = \text{MSIFS} + \text{RFSTBL} \).

The IEEE 802.15.4 Specification defines \(a_{\text{MinLIFSPeriod}} \) as a constant value of 40 symbol periods. The \(a_{\text{MinLIFSPeriod}} \) can be programmed by the MLIFS (TXPEND 0x21<7:2>) and RFSTBL (TXSTBL 0x2E<7:4>) bits, where \(a_{\text{MinLIFSPeriod}} = \text{MLIFS} + \text{RFSTBL} \).

The IEEE 802.15.4 Specification defines \(a_{\text{TurnaroundTime}} \) as a constant value of 12 symbol periods. The \(a_{\text{TurnaroundTime}} \) can be programmed by the TURNTIME (TXTIME 0x27<7:4>) and RFSTBL (TXSTBL 0x2E<7:4>) bits, where \(a_{\text{TurnaroundTime}} = \text{TURNTIME} + \text{RFSTBL} \).

FIGURE 3-8: INTERFRAME SPACING (IFS)

<table>
<thead>
<tr>
<th>Acknowledged Transmission:</th>
<th>Unacknowledged Transmission:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Frame</td>
<td>Long Frame</td>
</tr>
<tr>
<td>ACK</td>
<td>Short Frame</td>
</tr>
<tr>
<td>SIFS</td>
<td>LIFS</td>
</tr>
<tr>
<td>(t_{\text{ack}})</td>
<td>(t_{\text{ack}})</td>
</tr>
</tbody>
</table>

Where \(a_{\text{TurnaroundTime}} \leq t_{\text{ack}} \leq (a_{\text{TurnaroundTime}} + a_{\text{UnitBackoffPeriod}}) \)

TABLE 3-12: REGISTERS ASSOCIATED WITH INTERFRAME SPACING

<table>
<thead>
<tr>
<th>Addr</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x21</td>
<td>TXPEND</td>
<td>MLIFS5</td>
<td>MLIFS4</td>
<td>MLIFS3</td>
<td>MLIFS2</td>
<td>MLIFS1</td>
<td>MLIFS0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x27</td>
<td>TXTIME</td>
<td>TURNTIME3</td>
<td>TURNTIME2</td>
<td>TURNTIME1</td>
<td>TURNTIME0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2E</td>
<td>TXSTBL</td>
<td>RFSTBL3</td>
<td>RFSTBL2</td>
<td>RFSTBL1</td>
<td>RFSTBL0</td>
<td>MSIFS3</td>
<td>MSIFS2</td>
<td>MSIFS1</td>
<td>MSIFS0</td>
</tr>
</tbody>
</table>
3.11 Reception

An IEEE 802.15.4 compliant packet is prefixed with a Synchronization Header (SHR) containing the preamble sequence and Start-of-Frame Delimiter (SFD) fields. The preamble sequence enables the receiver to achieve symbol synchronization.

The MRF24J40 monitors incoming signals and looks for the preamble of IEEE 802.15.4 packets. When a valid synchronization is obtained, the entire packet is demodulated and the CRC is calculated and checked. The packet is accepted or rejected depending on the reception mode and frame filter, and placed in the RXFIFO buffer. When the packet is placed in the RXFIFO, a Receive Interrupt (RXIF 0x31<3>) is issued. The RXFIFO address mapping is shown in Figure 3-9.

The following sections detail the reception operation of the MRF24J40.

FIGURE 3-9: PACKET RECEPTION
3.11.1 RECEPTION MODES
The MRF24J40 can be configured for one of three different Reception modes as shown in Table 3-13. An explanation of each of the modes follows.

TABLE 3-13: RECEPTION MODES

<table>
<thead>
<tr>
<th>Receive Mode</th>
<th>RXMCR (0x00<1:0>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>00 (default)</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
</tr>
<tr>
<td>Promiscuous</td>
<td>01</td>
</tr>
</tbody>
</table>

3.11.1.1 Normal Mode
Normal mode accepts only packets with a good CRC and satisfies the requirements of the IEEE 802.15.4 Specification, Section 7.5.6.2 “Reception and Rejection”:
1. The frame type subfield of the frame control field shall not contain an illegal frame type.
2. If the frame type indicates that the frame is a beacon frame, the source PAN identifier shall match macPANId unless macPANId is equal to 0xFFFF, in which case, the beacon frame will be accepted regardless of the source PAN identifier.
3. If a destination PAN identifier is included in the frame, it shall match macPANId or shall be the broadcast PAN identifier (0xFFFF).
4. If a short destination address is included in the frame, it shall match either macShortAddress or the broadcast address (0xFFFF). Otherwise, if an extended destination address is included in the frame, it shall match aExtendedAddress.
5. If only source addressing fields are included in a data or MAC command frame, the frame shall be accepted only if the device is a PAN coordinator and the source PAN identifier matches macPANId.

3.11.1.2 Error Mode
Error mode accepts packets with good or bad CRC.

3.11.1.3 Promiscuous Mode
Promiscuous mode accepts all packets with a good CRC.

3.11.2 FRAME FORMAT FILTER
Once the packet has been accepted, depending on the Reception mode above, the frame format is filtered according to Table 3-14. Command, data or beacon only frames can be filtered and placed in the RXFIFO buffer. All frames (default) can be selected placing all frame formats (command, data and beacon) in the RXFIFO.

TABLE 3-14: FRAME FORMAT FILTER

<table>
<thead>
<tr>
<th>Filter Mode</th>
<th>RXFLUSH (0x0D<3:1>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Frames</td>
<td>000 (default)</td>
</tr>
<tr>
<td>Command Only</td>
<td>100</td>
</tr>
<tr>
<td>Data Only</td>
<td>010</td>
</tr>
<tr>
<td>Beacon Only</td>
<td>001</td>
</tr>
</tbody>
</table>

3.11.3 ACKNOWLEDGMENT REQUEST
If the received packet has the Acknowledgment request bit set to ‘1’ (bit 5 of the Frame Control Field – refer to IEEE 802.15.4 Standard, Section 7.2.1.1 “Frame Control Field”), the TXMAC circuitry will send an Acknowledgment packet automatically. This feature minimizes the processing duties of the host microcontroller and keeps the Acknowledgment timing within the IEEE 802.15.4 Specification.

The sequence number field of the Acknowledgment frame will contain the value of the sequence number of the received frame for which the Acknowledgment is to be sent.

Refer to Section 3.13 “Acknowledgement” for more information.

3.11.4 RECEIVE INTERRUPT
Once the packet is accepted, depending on the Reception mode (Normal, Error or Promiscuous) and frame format (all, command, data or beacon), it is placed in the RXFIFO buffer and a Receive Interrupt (RXIF 0x31<3>) is issued.

Note: The INTSTAT (0x31) register clears-to-zero upon read. Therefore, the host microcontroller should read and store the INTSTAT register and check the bits to determine which interrupt occurred. Refer to Section 3.3 “Interrupts” for more information.

Data is placed into the RXFIFO buffer as shown in Figure 3-9. The host processor reads the RXFIFO via the SPI port by reading addresses, 0x300-0x38F. Address, 0x300, contains the received packet frame length which includes the header length, data payload length, plus 2 for the FCS bytes. An LQI and RSSI value comes after the FCS. Refer to Section 3.6 “Received Signal Strength Indicator (RSSI)/Energy Detection (ED)” and Section 3.7 “Link Quality Indication (LQI)” for more information.
The RXFIFO is a 128-byte dual port buffer. The RXMAC circuitry places the packet into the RXFIFO sequentially, byte by byte, using an internal pointer. The internal pointer is reset one of three ways:

1. When the host microcontroller reads the first byte of the packet.
2. Manually by setting the RXFLUSH (0x0D<0>) bit. The bit is automatically cleared to '0' by hardware.
3. Software Reset (see Section 3.1 “Reset” for more information).

The RXFIFO can only hold one packet at a time. It is highly recommended that the host microcontroller read the entire RXFIFO without interruption so that received packets are not missed.

Note: When the first byte of the RXFIFO is read, the MRF24J40 is ready to receive the next packet. To avoid receiving a packet while the RXFIFO is being read, set the Receive Decode Inversion (RXDECINV) bit (0x39<2>) to '1' to disable the MRF24J40 from receiving a packet off the air. Once the data is read from the RXFIFO, the RXDECINV should be cleared to '0' to enable packet reception.

Example 3-2 shows example steps to read the RXFIFO.

EXAMPLE 3-2: STEPS TO READ RXFIFO

Example steps to read the RXFIFO:
1. Receive RXIF interrupt.
2. Disable host microcontroller interrupts.
3. Set RXDECINV = 1; disable receiving packets off air.
4. Read address, 0x300; get RXFIFO frame length value.
5. Read RXFIFO addresses, 0x301 through (0x300 + Frame Length + 2); read packet data plus LQI and RSSI.
6. Clear RXDECINV = 0; enable receiving packets.
7. Enable host microcontroller interrupts.

3.11.5 SECURITY

If the received packet has the security enabled bit set to '1' (bit 3 of the frame control field; refer to IEEE 802.15.4 Standard, Section 7.2.1.1 “Frame Control Field”) a Security Interrupt (SECIF 0x31<4>) is issued. The host microcontroller can then decide to decrypt or ignore the packet. See Section 3.17 “Security” for more information.

TABLE 3-15: REGISTERS ASSOCIATED WITH RECEPTION

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>RXMCR</td>
<td>r</td>
<td></td>
<td>r</td>
<td>NOACKRSP</td>
<td>r</td>
<td>PANCOORD</td>
<td>COORD</td>
<td>ERRPKT</td>
</tr>
<tr>
<td>0x0D</td>
<td>RXFLUSH</td>
<td>r</td>
<td>WAKEPOL</td>
<td>WAKEPAD</td>
<td>r</td>
<td>CMDONLY</td>
<td>DATAONLY</td>
<td>BCNONLY</td>
<td>RXFLUSH</td>
</tr>
<tr>
<td>0x2A</td>
<td>SOFTST</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RSTPWR</td>
<td>RSTBB</td>
<td>RSTMAC</td>
<td></td>
</tr>
<tr>
<td>0x31</td>
<td>INSTAT</td>
<td>SLPIF</td>
<td>WAKEIF</td>
<td>HSYMTRIF</td>
<td>SECIF</td>
<td>RXIF</td>
<td>TXG2IF</td>
<td>TXG1IF</td>
<td>TXNIF</td>
</tr>
<tr>
<td>0x32</td>
<td>INTCON</td>
<td>SLPIE</td>
<td>WAKEIE</td>
<td>HSYMTRIE</td>
<td>SECIE</td>
<td>RXIE</td>
<td>TXG2IE</td>
<td>TXG1IE</td>
<td>TXNIE</td>
</tr>
<tr>
<td>0x39</td>
<td>BBREG1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RXDECINV</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>
3.12 Transmission

IEEE 802.15.4 Standard defines four frame types: Acknowledgment, Data, Beacon and MAC Command frame. The transmission of the Acknowledgment frame is handled automatically in hardware by the MRF24J40 and is covered in Section 3.13 “Acknowledgement”. Hardware management of the transmission of data, beacon and MAC command frames are handled in four transmit (TX) FIFOs.

Each TX FIFO has a specific purpose depending on if the MRF24J40 is configured for Beacon or Non-beacon-Enabled mode. Configuring the MRF24J40 for beacon-enabled network operation is covered in Section 3.8.1 “Beacon-Enabled Network”. Configuring the MRF24J40 for nonbeacon-enabled network operation is covered in Section 3.8.2 “Nonbeacon-Enabled Network”.

The four TX FIFOs are:

- TX Normal FIFO – Used for the transmission of data and MAC command frames during the Contention Access Phase (CAP) of the superframe if the device is operating in Beacon-Enabled mode and for all transmissions when the device is operating in Nonbeacon-Enabled mode.
- TX Beacon FIFO – Used for the transmission of the beacon frames.
- TX GTS1 FIFO and TX GTS2 FIFO – Used for the transmission of data during the Contention Free Period (CFP) of the superframe if the device is operating in Beacon-Enabled mode. Refer to Section 3.8.1 “Beacon-Enabled Network” for more information about guaranteed time slots in Beacon-Enabled mode.

Figure 3-10 summarizes the memory map for each of the TX FIFOs. Each TX FIFO occupies 128 bytes of memory and can hold one frame at a time.

Figure 3-11 shows the flow of data from the TX FIFO to on air packet and summarizes the data, beacon and MAC command frames.

FIGURE 3-10: MEMORY MAP OF TX FIFO

<table>
<thead>
<tr>
<th>Long Address Memory Space</th>
<th>128 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x000 TX Normal FIFO</td>
<td></td>
</tr>
<tr>
<td>0x07F TX Beacon FIFO</td>
<td></td>
</tr>
<tr>
<td>0x080 TX Normal FIFO</td>
<td></td>
</tr>
<tr>
<td>0x0FF TX GTS1 FIFO</td>
<td></td>
</tr>
<tr>
<td>0x100 TX Normal FIFO</td>
<td></td>
</tr>
<tr>
<td>0x17F TX GTS2 FIFO</td>
<td></td>
</tr>
<tr>
<td>0x180 TX Normal FIFO</td>
<td></td>
</tr>
<tr>
<td>0x1FF TX Normal FIFO</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 3-11: PACKET TRANSMISSION

<table>
<thead>
<tr>
<th>Frame Length (m)</th>
<th>Header Length (n)</th>
<th>Data Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 t 1 4 – 20</td>
<td>MHR</td>
<td>MSDU</td>
</tr>
<tr>
<td>1 n – 1</td>
<td>MFR</td>
<td>FCS</td>
</tr>
</tbody>
</table>

- From TX FIFO to Air
- Packet Structure
- TX FIFO
- TXMAC
- TX baseband
- Packet
-_PHY

Frame Control
Addressing
Sequence Number
SHR PHR PHY Payload
PPDU

Fields appended by TXMAC
Fields appended by TX baseband
3.12.1 TX FIFOs FRAME STRUCTURE

The TX FIFOs are divided into four fields:

Header length – Used primarily in Security mode and contains the length, in octets (bytes), of the MAC Header (MHR). In Unsecure mode, this field is ignored.

Payload – Contains the data payload.

Frame length – Contains the length, in octets (bytes), of the MAC Header (MHR) and data payload.

Header – Contains the MAC Header (MHR).

When the individual TX FIFO is triggered, the MRF24J40 will handle transmitting the packet using the CSMA-CA algorithm, Acknowledgment of the packet (optional), retransmit if Acknowledgment not received within required time period and interframe spacing. The MRF24J40 will add the Synchronization Header (SHR), PHY Header (PHR) and Frame Check Sequence (FCS) automatically. If a packet is to be transmitted using in-line security, the Message Integrity Code (MIC) will be appended in the data payload by the MRF24J40. Refer to Section 3.17 “Security” for more information about transmitting and receiving data in Security mode. In Beacon-Enabled mode, the MRF24J40 will handle superframe timing, transmission of the beacon and data packets during CAP and CFP.

3.12.2 TX NORMAL FIFO

In Beacon-Enabled mode, the TX Normal FIFO is used for the transmission of data and MAC command frames during the Contention Access Phase (CAP) of the superframe.

In Nonbeacon-Enabled mode, the TX Normal FIFO is used for all transmissions.

To transmit a packet in the TX Normal FIFO, perform the following steps:

1. The host processor loads the TX Normal FIFO with IEEE 802.15.4 compliant data or MAC command frame using the format shown in Figure 3-12.

FIGURE 3-12: TX NORMAL FIFO FORMAT

<table>
<thead>
<tr>
<th>Octets</th>
<th>t</th>
<th>f</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Structure</td>
<td>Header Length (m)</td>
<td>Frame Length (m + n)</td>
<td>Header</td>
<td>Payload</td>
</tr>
<tr>
<td>TX Normal FIFO Memory Address</td>
<td>0x000</td>
<td>0x001</td>
<td>0x002 – (0x002 + m – 1)</td>
<td>(0x002 + m) – (0x002 + m + n – 1)</td>
</tr>
</tbody>
</table>

2. If the packet requires an Acknowledgment, the Acknowledgment request bit in the frame control field should be set to ‘1’ in the MAC Header (MHR) when the host microcontroller loads the TX Normal FIFO, and set the TXNACKREQ (TXNCON 0x1B<2>) bit = 1. Refer to Section 3.13 “Acknowledgement” for more information about Acknowledgment configuration.

3. If the frame is to be encrypted, the security enabled bit in the frame control field should be set to ‘1’ in the MAC Header (MHR) when the host microcontroller loads the TX Normal FIFO, and set the TXNSECEN (TXNCON 0x1B<1>) bit = 1. Refer to Section 3.17 “Security” for more information about Security modes.

4. Transmit the packet by setting the TXNTRIG (TXNCON 0x1B<0>) bit = 1. The bit will be automatically cleared by hardware.

5. A TXNIF (INTSTAT 0x31<0>) interrupt will be issued. The TXNSTAT (TXSTAT 0x24<0>) bit indicates the status of the transmission:
 - TXNSTAT = 0: Transmission was successful
 - TXNSTAT = 1: Transmission failed, retry count exceeded

 The number of retries of the most recent transmission is contained in the TXNRETRY (TXSTAT 0x24<7:6>) bits. The CCAFAL (TXSTAT 0x24<5>) bit = 1 indicates if the failed transmission was due to the channel busy (CSMA-CA timed out).
3.12.3 TX BEACON FIFO

In Beacon-Enabled mode, the TX Beacon FIFO is used for the transmission of beacon frames during the beacon slot of the superframe.

In Nonbeacon-Enabled mode, the TX Beacon FIFO is used for the transmission of a beacon frame at the time it is triggered (transmitted).

To transmit a packet in the TX Beacon FIFO, perform the following steps:

1. The host processor loads the TX Beacon FIFO with an IEEE 802.15.4 compliant beacon frame using the format shown in Figure 3-13.

2. If the beacon frame is to be encrypted, the security enabled bit in the frame control field should be set to ‘1’ in the MAC Header (MHR) when the host microcontroller loads the TX Beacon FIFO, and set the TXBSECEN (TXBCON 0x1A<0>) bit = 1. Refer to Section 3.17 “Security” for more information about Security modes.

3. Transmit the packet by setting the TXBTRIG (TXBCON 0x1A<0>) bit = 1. The bit will be automatically cleared by hardware. If the MRF24J40 is configured for Beacon-Enabled mode, the beacon frame will be transmitted at the beacon time at the beginning of the superframe. In Nonbeacon-Enabled mode, the beacon frame is transmitted at the time of triggering.

<table>
<thead>
<tr>
<th>Packet Structure</th>
<th>Header (m)</th>
<th>Frame Length (m+n)</th>
<th>Header</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x080 0x081</td>
<td>0x082 - (0x082 + m - 1)</td>
<td>(0x082 + m) - (0x082 + m + n - 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 3-13: TX BEACON FIFO FORMAT
3.12.4 TX GTSx FIFO

In Beacon-Enabled mode, the TX GTSx FIFOs are used for the transmission of data or MAC command frames during the CFP of the superframe. Refer to Section 3.8.1 “Beacon-Enabled Network” for more information about guaranteed time slots in Beacon-Enabled mode.

To transmit a packet in the TX GTSx FIFO, perform the following steps:

1. The host processor loads the respective TX GTSx FIFO with an IEEE 802.15.4 compliant data or MAC command frame using the format shown in Figure 3-14.

2. If the packet requires an Acknowledgment, the Acknowledgment request bit in the frame control field should be set to ‘1’ in the MAC Header (MHR) when the host microcontroller loads the respective TX GTSx FIFO, and set the TXG1ACKREQ (TXG1CON 0x1C<5:3>) or TXG2ACKREQ (TXG2CON 0x1D<5:3>) bit = 1. Refer to Section 3.13 “Acknowledgement” for more information about Acknowledgment configuration.

3. Program the number of retry times for the respective TX GTSx FIFO in the TXG1RETRY (TXG1CON 0x1C<7:6>) or TXG2RETRY (TXG2CON 0x1D<7:6>) bits.

4. If the frame is to be encrypted, the security enabled bit in the frame control field should be set to ‘1’ in the MAC Header (MHR) when the host microcontroller loads the TX GTSx FIFO, and set the TXG1SECEN (TXG1CON 0x1C<7:6>) or TXG2SECEN (TXG2CON 0x1D<7:6>) bit = 1. Refer to Section 3.17 “Security” for more information about Security modes.

5. Program the slot number for the respective TX GTSx FIFO in the TXG1SLOT (TXG1CON 0x1C<5:3>) or TXG2SLOT (TXG2CON 0x1D<5:3>) bits.

6. Transmit the packet in the respective TX GTSx FIFO by setting the TXG1TRIG (TXG1CON 0x1C<8>) or TXG2TRIG (TXG2CON 0x1D<8>) bit = 1. The bit will be automatically cleared by hardware. The packet will be transmitted at the corresponding slot time of the superframe.

7. A TXG1IF (INTSTAT 0x31<1>) or TXG2IF (INTSTAT 0x31<1>) interrupt will be issued. The TXG1STAT (TXG1STAT 0x24<1>) or TXG2STAT (TXG2STAT 0x24<1>) bit indicates the status of the transmission:
 - TXGxSTAT = 0: Transmission was successful
 - TXGxSTAT = 1: Transmission failed, retry count exceeded

The number of retries of the most recent transmission is contained in the TXG1RETRY (TXG1CON 0x1C<7:6>) or TXG2RETRY (TXG2CON 0x1D<7:6>) bits. The CCAFAIL (TXSTAT 0x24<5>) bit = 1 indicates if the failed transmission was due to the channel busy (CSMA-CA timed out). The TXG1FNT (TXSTAT 0x24<3>) or TXG2FNT (TXSTAT 0x24<4>) bit = 1 indicates if the TX GTSx FIFO transmission failed due to not enough time to transmit in the guaranteed time slot.

FIGURE 3-14: TX GTS1 AND GTS2 FIFOS FORMAT

<table>
<thead>
<tr>
<th>octets</th>
<th>1</th>
<th>f</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Structure</td>
<td>Header Length</td>
<td>Frame Length</td>
<td>Header</td>
<td>Payload</td>
</tr>
<tr>
<td>TX GTS1 FIFO Memory Address</td>
<td>0x100</td>
<td>0x101</td>
<td>0x102 − (0x102 + m − 1)</td>
<td>(0x102 + m) − (0x102 + m + n − 1)</td>
</tr>
<tr>
<td>TX GTS2 FIFO Memory Address</td>
<td>0x180</td>
<td>0x181</td>
<td>0x182 − (0x182 + m − 1)</td>
<td>(0x182 + m) − (0x182 + m + n − 1)</td>
</tr>
<tr>
<td>Addr.</td>
<td>Name</td>
<td>Bit 7</td>
<td>Bit 6</td>
<td>Bit 5</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0x1A</td>
<td>TXBCON0</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x1B</td>
<td>TXNCON</td>
<td>r</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>0x1C</td>
<td>TXG1CON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1D</td>
<td>TXG2CON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x24</td>
<td>TXSTAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x31</td>
<td>INTSTAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x32</td>
<td>INTCON</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.13 Acknowledgement

An Acknowledgment frame is used for confirming successful frame reception. The successful reception of a data or MAC command frame can be optionally confirmed with an Acknowledgment frame. If the originator does not receive an Acknowledgment after, at most \texttt{macAckWaitDuration} (54) symbols, it assumes that the transmission was unsuccessful and retries the frame transmission. The turnaround time from the reception of the packet to the transmission of the Acknowledgment shall be less than \texttt{aTurnaroundTime} (12) symbols. Acknowledgment frames are sent without using a CSMA-CA mechanism. Refer to IEEE 802.15.4-2003 Standard, Section 7.5.6.4 “Use of Acknowledgments” for more information.

The MRF24J40 provides hardware support for:

- Acknowledgment Request – Originator
- Acknowledgment Request – Recipient
- Reception of Acknowledgment with Frame Pending bit
- Transmission of Acknowledgment with Frame Pending bit

These features are explained below.

3.13.1 ACKNOWLEDGMENT REQUEST – ORIGINATOR

A data or MAC command frame, transmitted by an originator with the Acknowledgment request subfield in its frame control field set to ‘1’, shall be Acknowledged by the recipient. The originator shall wait for at most \texttt{macAckWaitDuration} (54) symbols for the corresponding Acknowledgment frame to be received. If an Acknowledgment is received, the transmission is successful. If an Acknowledgment is not received, the originator shall conclude that the transmission failed. If the transmission was direct, the originator shall retransmit the data or MAC command frame and wait. If an Acknowledgment is not received after \texttt{aMaxFrameRetries} (3) transmissions, the originator shall assume the transmission has failed and notify the upper layers of the failure.

The MRF24J40 features hardware retransmit. It will automatically retransmit the packet if an Acknowledgment has not been received. The Acknowledgment request bit in the frame control field should be programmed into the transmit FIFO of interest and the applicable \texttt{xACKREQ} bit should be set:

- \texttt{TXNACKREQ (TXNCON 0x1B<2>)} – When the TX Normal FIFO transmits a frame, an Acknowledgment frame is expected. If an Acknowledgment is not received, retransmit.
- \texttt{TXG1ACKREQ (TXG1CON 0x1C<2>)} – When the TX GTS1 FIFO transmits a frame, an Acknowledgment frame is expected. If an Acknowledgment is not received, retransmit.
- \texttt{TXG2ACKREQ (TXG2CON 0x1D<2>)} – When the TX GTS2 FIFO transmits a frame, an Acknowledgment frame is expected. If an Acknowledgment is not received, retransmit.

When the frame is transmitted, the MRF24J40 will expect an Acknowledgment frame within \texttt{macAckWaitDuration}. If an Acknowledgment is not received, it will retransmit \texttt{aMaxFrameRetries}.

The \texttt{macAckWaitDuration} value can be programmed by the MAWD (ACKMOUT 0x12<6:0>) bits.

The \texttt{aMaxFrameRetries} value is a constant and not configurable. The number of retry times of the most recent TXN_FIFO transmission can be read in the TXN_RETRRY (TXSTAT 0x24<7:6>) bits. The number of retry times for the TX GTS1 FIFO and TX GTS2 FIFO can be programmed or read in the TXG1_RETRRY (TXG1CON 0x1C<7:6>) and TXG2_RETRRY (TXG2CON 0x1D<7:6>) bits.
3.13.2 ACKNOWLEDGMENT REQUEST – RECIPIENT

The MRF24J40 features hardware automatic Acknowledgment. It will automatically Acknowledge a frame if the received frame has the Acknowledgment request subfield in the frame control field set to ‘1’. This will maintain the RX-TX timing requirements of the IEEE 802.15.4 Specification.

Automatic Acknowledgment is enabled by clearing the NOACKRSRP (RXMCR 0x00<5>) bit = 0. To disable automatic Acknowledgment, set the NOACKRSRP (RXMCR 0x00<5>) bit = 1.

The transmission of an Acknowledgment frame in a non-beacon-enabled network, or in the CFP, shall commence aTurnaroundTime (12) symbols after the reception of the data or MAC command frame. The transmission of an Acknowledgment frame in the CAP shall commence at a backoff slot boundary. In this case, the transmission of an Acknowledgment frame shall commence between aTurnaroundTime and (aTurnaroundTime + aUnitBackoffPeriod) symbols after the reception of the data or MAC command frame.

The IEEE 802.15.4 Specification defines aTurnaroundTime as a constant value of 12 symbol periods. The aTurnaroundTime can be programmed by the TURNTIME (TXTIME 0x27<7:4>) and RFSTBL (TXSTBL 0x2E<7:4>) bits where aTurnaroundTime = TURNTIME + RFSTBL.

3.13.3 RECEPTION OF ACKNOWLEDGMENT WITH FRAME PENDING BIT

The status of the frame pending bit in the frame control field of the received Acknowledgment frame is reflected in the FPSTAT (TXNCON 0x1B<4>) bit.

3.13.4 TRANSMISSION OF ACKNOWLEDGMENT WITH FRAME PENDING BIT

The frame pending bit in the frame control field of an Acknowledgment frame indicates that a device has additional data to send to the recipient following the current transfer. Refer to IEEE 802.15.4-2003 Standard, Section 7.2.1.1.3 “Frame Pending Subfield”.

Acknowledgment of a data request MAC command – In response to a data request MAC command, if the MRF24J40 has additional (pending) data, it can set the frame pending bit of the Acknowledgment frame by setting DRPACK (ACKTMOUT 0x12<7>) = 1. This will only set the frame pending bit for an Acknowledgment of a data request MAC command.

TABLE 3-17: REGISTERS ASSOCIATED WITH ACKNOWLEDGEMENT

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>RXMCR</td>
<td>r</td>
<td>r</td>
<td>NOACKRSRP</td>
<td>r</td>
<td>PANCOORD</td>
<td>COORD</td>
<td>ERRPKT</td>
<td>PROMI</td>
</tr>
<tr>
<td>0x12</td>
<td>ACKTMOUT</td>
<td>DRPACK</td>
<td>MAWD6</td>
<td>MAWD5</td>
<td>MAWD4</td>
<td>MAWD3</td>
<td>MAWD2</td>
<td>MAWD1</td>
<td>MAWD0</td>
</tr>
<tr>
<td>0x1B</td>
<td>TXNCON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>FPSTAT</td>
<td>INDIRECT</td>
<td>TXNACKREQ</td>
<td>TXNSECEN</td>
<td>TXNTRIG</td>
</tr>
<tr>
<td>0x1C</td>
<td>TXG1CON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TURNTIME3</td>
<td>TURNTIME2</td>
<td>TURNTIME1</td>
<td>TURNTIME0</td>
<td>r</td>
</tr>
<tr>
<td>0x1D</td>
<td>TXG2CON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RFSTBL3</td>
<td>RFSTBL2</td>
<td>RFSTBL1</td>
<td>RFSTBL0</td>
<td>r</td>
</tr>
<tr>
<td>0x21</td>
<td>TXPEND</td>
<td>MLIFS5</td>
<td>MLIFS4</td>
<td>MLIFS3</td>
<td>MLIFS2</td>
<td>MLIFS1</td>
<td>MLIFS0</td>
<td>GTS1</td>
<td>FPACK</td>
</tr>
<tr>
<td>0x24</td>
<td>TXSTAT</td>
<td>TXRETRY1</td>
<td>TXRETRY0</td>
<td>CCAFAIL</td>
<td>TXG2FNT</td>
<td>TXG1FNT</td>
<td>TXG2STAT</td>
<td>TXG1STAT</td>
<td>TXNS1</td>
</tr>
<tr>
<td>0x27</td>
<td>TXTIME</td>
<td>TURNTIME3</td>
<td>TURNTIME2</td>
<td>TURNTIME1</td>
<td>TURNTIME0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x2E</td>
<td>TXSTBL</td>
<td>RFSTBL3</td>
<td>RFSTBL2</td>
<td>RFSTBL1</td>
<td>RFSTBL0</td>
<td>MSIFS3</td>
<td>MSIFS2</td>
<td>MSIFS1</td>
<td>MSIFS0</td>
</tr>
</tbody>
</table>
3.14 Battery Monitor

The MRF24J40 provides a battery monitor feature to monitor the system supplied voltage. A threshold voltage level (BATTH) can be set and the system supplied voltage can be monitored by the Battery Low Indicator (BATIND) to determine if the voltage is above or below the threshold. The following steps set the threshold and enable battery monitoring:

1. Set the battery monitor threshold (BATTH) voltage in the RFCON5 (0x205<7:4>) register.
2. Enable battery monitoring by setting BATEN = 1 in the RFCON6 (0x206<3>) register.
3. Periodically, monitor the Battery Low Indicator (BATIND) bit in the RXSR (0x30<5>) register to determine if the system supply voltage is above or below the battery monitor threshold (BATTH).

TABLE 3-18: REGISTERS ASSOCIATED WITH POWER MANAGEMENT

<table>
<thead>
<tr>
<th>Addr</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x30</td>
<td>RXSR</td>
<td>r</td>
<td></td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x205</td>
<td>RFCON5</td>
<td>r</td>
<td>BATTH3</td>
<td>BATTH2</td>
<td>BATTH1</td>
<td>BATTH0</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x206</td>
<td>RFCON6</td>
<td>r</td>
<td>r</td>
<td></td>
<td>r</td>
<td>20MRECVR</td>
<td>BATEN</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>
3.15 Sleep

The MRF24J40 can be placed into a low-current Sleep mode. During Sleep, the 20 MHz main oscillator is turned off, disabling the RF, baseband and MAC circuitry. Data is retained in the control and FIFO registers and the MRF24J40 is accessible via the SPI port. There are two Sleep modes:

- Timed Sleep Mode
- Immediate Sleep and Wake Mode

3.15.1 TIMED SLEEP MODE

The Timed Sleep Mode uses several counters to time events for the Sleep and wake-up of the MRF24J40. The following sections cover Sleep clock generation, calibration and counters.

FIGURE 3-15: SLEEP CLOCK GENERATION

The 100 kHz internal oscillator requires no external components. However, it is not as accurate or stable as the 32 kHz external crystal oscillator. It is recommended that it be calibrated before use. See Section 3.15.1.2 “Sleep Clock Calibration” below for the Sleep clock calibration procedure.

To select the 100 kHz internal oscillator as the source of SLPCLK, set the SLPCLKSEL bits (RFCON7 0x207<7:6> to '10')

The 32 kHz external crystal oscillator provides better frequency accuracy and stability than the 100 kHz internal oscillator. The 32 kHz external crystal oscillator external circuitry is explained in detail in Section 2.7 “32 kHz External Crystal Oscillator”.

To select the 32 kHz external crystal oscillator as the source of SLPCLK, set the SLPCLKSEL bits (RFCON7 0x207<7:6>) to '01'.

3.15.1.1 Sleep Clock Generation

Figure 3-15 shows the Sleep clock generation circuitry. The Sleep Clock (SLPCLK) frequency is selectable between a 100 kHz internal oscillator or a 32 kHz external crystal oscillator. The Sleep Clock Enable (SLPCLKEN) bit in the SLPCON0 (0x211<0>) register can enable (SLPCLKEN = 0; default setting) or disable (SLPCLKEN = 1) the Sleep clock oscillators. The SLPCLK frequency can be further divided by the Sleep Clock Divisor (SLPCLKDIV 0x220<4:0> bits. The SLPCLK frequency can be calibrated; the procedure is listed in Section 3.15.1.2 “Sleep Clock Calibration” below.
3.15.1.2 Sleep Clock Calibration

The SLPCLK frequency is calibrated by a 20-bit SLPCAL register clocked by the 20 MHz main oscillator (50 ns period). Sixteen samples of the SLPCLK are counted and stored in the SLPCAL register. To perform SLPCLK calibration:

1. Select the source of SLPCLK.
2. Begin calibration by setting the SLPCALEN bit (SLPCAL2 0x20B<4>) to ‘1’. Sixteen samples of the SLPCLK are counted and stored in the SLPCAL register.
3. Calibration is complete when the SLPCALRDY bit (SLPCAL2 0x20B<7>) is set to ‘1’.

The 20-bit SLPCAL value is contained in registers, SLPCAL2, SLPCAL1 and SLPCAL0 (0x20B<3:0>, 0x20A and 0x209). The Sleep clock period is calculated as shown in Equation 3-1.

EQUATION 3-1:

$$P_{SLPCAL} = \text{SLPCAL} \times 50 \text{ ns/}16$$

The SLPCLK frequency can be slowed by setting the Sleep Clock Division (SLPCLKDIV) bits (SLPCON1 0x220<4>).

3.15.1.3 Sleep Mode Counters

Figure 3-16 shows the Sleep mode counters. A summary of the counters are:

- **Main Counter** (0x229<1:0>, 0x228, 0x227, 0x226) – A 26-bit counter clocked by SLPCLK. Together with the Remain Counter times events as listed in Table 3-19.

- **Remain Counter** (0x225, 0x224) – A 16-bit counter clocked by MAINCLK. Together with the Main Counter times events as listed in Table 3-19.

- **Wake Time** (0x223<2:0>, 0x222) – An 11-bit value that is compared with the main counter value to signal the time to enable (wake-up) the 20 MHz main oscillator. Table 3-20 gives the recommended values for WAKETIME depending on the SLPCLK frequency.

- **Wake Count** (0x36<4:3>, 0x35<6:0>) – A 9-bit counter clocked by SLPCLK. During the time the wake counter is counting, the 20 MHz main oscillator is starting up, stabilizing and disabled to the RF, baseband and MAC circuitry. The recommended wake count period is 2 ms to allow the 20 MHz main oscillator to stabilize. Table 3-20 gives the recommended values for WAKECNT depending on the SLPCLK frequency.

TABLE 3-19: MAIN AND REMAIN COUNTER TIMED EVENTS

<table>
<thead>
<tr>
<th>Mode</th>
<th>Timed Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beacon-Enabled Coordinator</td>
<td>Beacon Interval (Bi)</td>
</tr>
<tr>
<td>Beacon-Enabled Device</td>
<td>Inactive Period</td>
</tr>
<tr>
<td>Nonbeacon-Enabled Coordinator or Device</td>
<td>Sleep Interval</td>
</tr>
</tbody>
</table>

TABLE 3-20: WAKE TIME AND WAKE COUNT RECOMMENDED VALUES

<table>
<thead>
<tr>
<th>SLPCLK Source</th>
<th>SLPCLKDIV</th>
<th>WAKETIME (2.1 ms)</th>
<th>WAKECNT (2 ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kHz</td>
<td>0x01</td>
<td>0x0D2</td>
<td>0x0C8</td>
</tr>
<tr>
<td>32 kHz</td>
<td>0x00</td>
<td>0x045</td>
<td>0x042</td>
</tr>
</tbody>
</table>
FIGURE 3-16: SLEEP MODE COUNTERS

Wake Time (WAKETIME<10:0>)

20 MHz Main Oscillator

SLPCLK

Main Counter (MAINCNT<25:0>)

REM_CNT = 0

SLPCLK

MAINCLK

WAKEIF

SLPACK (SLPACK 0x35<7>)

Nonbeacon-Enabled mode (BO = 15, SLOTTED = 0)

SLPCLK

STARTCNT (MAINCNT3 0x22<7>)

Main Counter (MAINCNT<25:0>)

EN

REM_CNT = 0

Nonbeacon-Enabled mode (BO = 15, SLOTTED = 0)

WAKEIFIE

Beacon Interval (Beacon-Enabled Coordinator)

 inactive Period (Beacon-Enabled Device)

Beacon-Enabled mode (BO ≠ 15, SLOTTED = 1)

WAKECNT = 0

WAKEF

Beacon-Enabled mode (BO ≠ 15, SLOTTED = 1)

WAKEFIE

Downloaded from Arrow.com.
Beacon-Enabled Coordinator mode – Figure 3-17 shows the Sleep time line for Beacon-Enabled Coordinator mode. In this mode, the sum of the main and remain counters is the Beacon Interval (BI) of the superframe. The MRF24J40 will transmit a beacon packet as per Beacon Interval shown in Equation 3-2.

EQUATION 3-2:

Beacon Interval = (MAINCNT * SLPCLK Period) + (REMCNT * 50 ns)

The MRF24J40 alerts the host processor on the boundary of the active and inactive portion via a Sleep Alert Interrupt (SLPIF 0x31<7>). The host microcontroller Acknowledges the interrupt (SLPACK 0x35<7>), at which time, the MRF24J40 turns off the 20 MHz main oscillator. As the main counter counts, WAKETIME = MAINCNT, the 20 MHz main oscillator is turned on. The wake counter counts as the 20 MHz main oscillator stabilizes and MAINCLK is disabled. The MRF24J40 alerts the host processor with a wake-up alert interrupt (0x31<6>).

FIGURE 3-17: BEACON-ENABLED COORDINATOR SLEEP TIME LINE

The beacon interval (BI) is the time between beacons. The MRF24J40 alerts the host processor on the boundary of the active and inactive portion via a Sleep Alert Interrupt (SLPIF 0x31<7>). The host microcontroller Acknowledges the interrupt (SLPACK 0x35<7>), at which time, the MRF24J40 turns off the 20 MHz main oscillator. As the main counter counts, WAKETIME = MAINCNT, the 20 MHz main oscillator is turned on. The wake counter counts as the 20 MHz main oscillator stabilizes and MAINCLK is disabled. The MRF24J40 alerts the host processor with a wake-up alert interrupt (0x31<6>).
Beacon-Enabled Device mode – Figure 3-18 shows the Sleep time line for Beacon-Enabled Device mode. In this mode, the sum of the main and remain counters is the inactive period of the superframe. The MRF24J40 will time the inactive period as shown in Equation 3-3.

EQUATION 3-3:

\[
\text{Inactive Period} = (\text{MAINCNT} \times \text{SLPCLK Period}) + (\text{REMCNT} \times 50 \text{ ns})
\]

The MRF24J40 alerts the host processor on the boundary of the active and inactive portion via a Sleep Alert Interrupt (SLPIF 0x31<7>). The host microcontroller Acknowledges the interrupt (SLPACK 0x35<7>), at which time, the MRF24J40 turns off the 20 MHz main oscillator. As the main counter counts, when WAKETIME = MAINCNT, the 20 MHz main oscillator is turned on. The wake counter counts as the 20 MHz main oscillator stabilizes. The MRF24J40 alerts the host processor with a wake-up alert interrupt (0x31<6>).

FIGURE 3-18: BEACON-ENABLED DEVICE SLEEP TIME LINE
Nonbeacon-Enabled (Coordinator or Device) mode – Figure 3-19 shows the Sleep time line for Nonbeacon-Enabled (Coordinator or Device) mode. In this mode, the host processor puts the MRF24J40 to Sleep by setting the STARTCNT (0x229<7>) bit. At the end of the Sleep interval, the MRF24J40 alerts the host processor with a wake-up alert interrupt (0x31<6>).

\[
\text{Sleep Interval} = (\text{MAINCNT} \times \text{SLPCLK Period}) - \text{WAKETIME} + \frac{[(\text{REMCNT} \times 50 \text{ ns})]}{2}
\]

EQUATION 3-4:

FIGURE 3-19: NONBEACON-ENABLED (COORDINATOR OR DEVICE) SLEEP TIME LINE
3.15.2 IMMEDIATE SLEEP AND WAKE-UP MODE

In the Immediate Sleep and Wake-up mode, the host microcontroller places the MRF24J40 to Sleep and wakes it up.

To enable the Immediate Wake-up mode, set the IMMWAKE (0x22<7>) bit to ‘1’.

To place the MRF24J40 to Sleep immediately, perform the following two steps:

1. Perform a Power Management Reset by setting the SLPACK (0x35<7>) bit to ‘1’. The bit will be automatically cleared to ‘0’ by hardware.
2. Put the MRF24J40 to Sleep immediately by setting the RFCTL (0x36) = 0x00

Wake-up can be performed in one of two methods:

1. Wake-up on WAKE pin 15. To enable the WAKE pin, set the WAKEPOL (0x0D<7>) bit to ‘1’ and set the WAKE pin polarity. Set the WAKEPOL (0x0D<7>) bit to ‘1’ for active-high signal, or clear to ‘0’ for active-low signal.

2. Wake-up on register. To wake up the MRF24J40 from Sleep via the SPI port, set the REGWAKE (0x22<6>) = 1 and then clear to ‘0’.

After wake-up, delay at least 2 ms to allow 20 MHz main oscillator time to stabilize before transmitting or receiving.

Example 3-3 summarizes the steps to prepare the MRF24J40 for wake-up on WAKE pin and placing to Sleep.

EXAMPLE 3-3: IMMEDIATE SLEEP AND WAKE

The steps to prepare the MRF24J40 for immediate sleep and wake up on WAKE pin

Prepare WAKE pin:
1. WAKE pin = low
2. RXFLUSH (0x0D) = 0x60 – Enable WAKE pin and set polarity to active-high
3. WAKECON (0x22) = 0x80 – Enable Immediate Wake-up mode

Put to Sleep:
4. SOFTRST (0x2A) = 0x04 – Perform a Power Management Reset
5. SLPACK (0x35) = 0x80 – Put MRF24J40 to Sleep immediately

To Wake:
6. WAKE pin = high – Wake-up
7. RFCTL (0x36) = 0x04 - RF State Machine reset
8. RFCTL (0x36) = 0x00
9. Delay 2 ms to allow 20 MHz main oscillator time to stabilize before transmitting or receiving.
TABLE 3-21: REGISTERS ASSOCIATED WITH SLEEP

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0D</td>
<td>RXFLUSH</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>CMDONLY</td>
<td>DATAONLY</td>
<td>BCONLY</td>
<td>RXFLUSH</td>
</tr>
<tr>
<td>0x22</td>
<td>WAKECON</td>
<td>IMMWAKE</td>
<td>REGWAKE</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
<td>INTL</td>
</tr>
<tr>
<td>0x2A</td>
<td>SOFTRST</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>RSTPWR</td>
<td>RSTBB</td>
<td>RSTMAC</td>
</tr>
<tr>
<td>0x31</td>
<td>INSTAT</td>
<td>SLPIF</td>
<td>WAKEIF</td>
<td>HSYMTMRIF</td>
<td>SECIF</td>
<td>RXIF</td>
<td>TXG2IF</td>
<td>TXG1IF</td>
<td>TXNIF</td>
</tr>
<tr>
<td>0x32</td>
<td>INTCON</td>
<td>SLPIE</td>
<td>WAKEIE</td>
<td>HSYMTMIE</td>
<td>SECIE</td>
<td>RXIE</td>
<td>TXG2IE</td>
<td>TXG1IE</td>
<td>TXNIE</td>
</tr>
<tr>
<td>0x35</td>
<td>SLPACK</td>
<td>SLPACK</td>
<td>WAKECNT6</td>
<td>WAKECNT5</td>
<td>WAKECNT4</td>
<td>WAKECNT3</td>
<td>WAKECNT2</td>
<td>WAKECNT1</td>
<td>WAKECNT0</td>
</tr>
<tr>
<td>0x36</td>
<td>RFCTL</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>WAKECNT8</td>
<td>WAKECNT7</td>
<td>RFRST</td>
<td>RFTXMODE</td>
</tr>
<tr>
<td>0x207</td>
<td>RFCON7</td>
<td>SLPCON2</td>
<td>SLPCON1</td>
<td>SLPCON0</td>
<td>SLPCAL2</td>
<td>SLPCAL19</td>
<td>SLPCAL18</td>
<td>SLPCAL17</td>
<td>SLPCAL16</td>
</tr>
<tr>
<td>0x220</td>
<td>REMCNTL</td>
<td>REMCNT7</td>
<td>REMCNT6</td>
<td>REMCNT5</td>
<td>REMCNT4</td>
<td>REMCNT3</td>
<td>REMCNT2</td>
<td>REMCNT1</td>
<td>REMCNT0</td>
</tr>
<tr>
<td>0x225</td>
<td>REMCNTH</td>
<td>REMCNT15</td>
<td>REMCNT14</td>
<td>REMCNT13</td>
<td>REMCNT12</td>
<td>REMCNT11</td>
<td>REMCNT10</td>
<td>REMCNT9</td>
<td>REMCNT8</td>
</tr>
<tr>
<td>0x226</td>
<td>MAINCNT0</td>
<td>MAINCNT7</td>
<td>MAINCNT6</td>
<td>MAINCNT5</td>
<td>MAINCNT4</td>
<td>MAINCNT3</td>
<td>MAINCNT2</td>
<td>MAINCNT1</td>
<td>MAINCNT0</td>
</tr>
<tr>
<td>0x227</td>
<td>MAINCNT1</td>
<td>MAINCNT15</td>
<td>MAINCNT14</td>
<td>MAINCNT13</td>
<td>MAINCNT12</td>
<td>MAINCNT11</td>
<td>MAINCNT10</td>
<td>MAINCNT9</td>
<td>MAINCNT8</td>
</tr>
<tr>
<td>0x228</td>
<td>MAINCNT2</td>
<td>MAINCNT23</td>
<td>MAINCNT22</td>
<td>MAINCNT21</td>
<td>MAINCNT20</td>
<td>MAINCNT19</td>
<td>MAINCNT18</td>
<td>MAINCNT17</td>
<td>MAINCNT16</td>
</tr>
<tr>
<td>0x229</td>
<td>MAINCNT3</td>
<td>STARTCNT</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>MAINCNT25</td>
<td>MAINCNT24</td>
<td></td>
</tr>
</tbody>
</table>
3.16 MAC Timer

Many features of the IEEE 802.15.4-2003 Standard are based on a symbol period of 16 μs. A 16-bit MAC timer is provided to generate interrupts configurable in multiples of 8 μs. The MAC timer begins counting down when a value is written to the HSYMTMRH (0x29) register. A HSYMTMRIF (0x31<5>) interrupt is generated when the count reaches zero.

TABLE 3-22: REGISTERS ASSOCIATED WITH THE MAC TIMER

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x28</td>
<td>HSYMTMRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x29</td>
<td>HSYMTMRH</td>
<td>HSYMTMR7</td>
<td>HSYMTMR6</td>
<td>HSYMTMR5</td>
<td>HSYMTMR4</td>
<td>HSYMTMR3</td>
<td>HSYMTMR2</td>
<td>HSYMTMR1</td>
<td>HSYMTMR0</td>
</tr>
<tr>
<td>0x31</td>
<td>INSTAT</td>
<td>SLPIF</td>
<td>WAKEIF</td>
<td>HSYMTMRIF</td>
<td>SECIF</td>
<td>RXIF</td>
<td>TXG2IF</td>
<td>TXG1IF</td>
<td>TXNIF</td>
</tr>
<tr>
<td>0x32</td>
<td>INTCON</td>
<td>SLPIE</td>
<td>WAKEIE</td>
<td>HSYMTMRIE</td>
<td>SECIE</td>
<td>RXIE</td>
<td>TXG2IE</td>
<td>TXG1IE</td>
<td>TXNIE</td>
</tr>
</tbody>
</table>
3.17 Security

The MRF24J40 provides a hardware security engine that implements the Advanced Encryption Standard, 128-bit (AES-128) according to the IEEE 802.15.4-2003 Standard. The MRF24J40 supports seven security suites which provide a group of security operations designed to provide security services on MAC and upper layer frames.

- AES-CTR
- AES-CCM-128
- AES-CCM-64
- AES-CCM-32
- AES-CRC-MAC-128
- AES-CRC-MAC-64
- AES-CRC-MAC-32

Security keys are stored in the Security Key FIFO. Four security keys, three for encryption and one for decryption, are stored in the memory locations shown in Figure 3-20.

The security engine can be used for the encryption and decryption of MAC sublayer frames for transmission and reception of secured frames and provide security encryption and decryption services to the upper layers. These functions are described in the following subsections.

3.17.1 MAC SUBLAYER TRANSMIT ENCRYPTION

A frame can be encrypted and transmitted from each of the TX FIFOs. Table 3-23 lists the TX FIFO and associated security key memory address and control register bits.

TABLE 3-23: ENCRYPTION SECURITY KEY AND CONTROL REGISTER BITS

<table>
<thead>
<tr>
<th>TX FIFO</th>
<th>Security Key Memory Address</th>
<th>Security Suite Select Bits</th>
<th>Security Enable Bits</th>
<th>Trigger Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX Normal FIFO</td>
<td>0x280-0x28F</td>
<td>TXNCIPHER</td>
<td>TXNSECEN</td>
<td>TXNTRIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SECON0 0x2C<2:0>)</td>
<td>(TXNCON 0x1B<1>)</td>
<td>(TXNCON 0x1B<0>)</td>
</tr>
<tr>
<td>TX GTS1 FIFO</td>
<td>0x290-0x29F</td>
<td>TXG1CIPHER</td>
<td>TXG1SECEN</td>
<td>TXG1TRIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SECCR2 0x37<2:0>)</td>
<td>(TXG1CON 0x1C<1>)</td>
<td>(TXG1CON 0x1C<0>)</td>
</tr>
<tr>
<td>TX GTS2 FIFO</td>
<td>0x2A0-0x2AF</td>
<td>TXG2CIPHER</td>
<td>TXG2SECEN</td>
<td>TXG2TRIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SECCR2 0x37<5:3>)</td>
<td>(TXG2CON 0x1D<1>)</td>
<td>(TXG2CON 0x1D<0>)</td>
</tr>
<tr>
<td>TX Beacon FIFO</td>
<td>0x2A0-0x2AF</td>
<td>TXBCIPHER</td>
<td>TXBCNSECEN</td>
<td>TXBCNTRIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SECON1 0x2D<6:4>)</td>
<td>(TXBCON 0x1A<1>)</td>
<td>(TXBCON 0x1A<0>)</td>
</tr>
</tbody>
</table>

Note: The TX GTS2 FIFO and TX Beacon FIFO share the same security key memory location.
To transmit a secured frame, perform the following steps:

1. The host processor loads one of the four TX FIFOs with an IEEE 802.15.4 compliant frame to be encrypted using the format shown in Figure 3-21.

FIGURE 3-21: SECURITY TX FIFO FORMAT

2. Program the corresponding TX FIFO 128-bit security key into the Security Key FIFO memory address, as shown in Table 3-23.

3. Select the security suite for the corresponding TX FIFO and program the security select bits as shown in Table 3-23. The security suite selection values are shown in Table 3-24.

TABLE 3-24: SECURITY SUITE SELECTION VALUE

<table>
<thead>
<tr>
<th>Mode</th>
<th>Security Suite Select Bits (see Table 3-23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>000</td>
</tr>
<tr>
<td>AES-CTR</td>
<td>001</td>
</tr>
<tr>
<td>AES-CCM-128</td>
<td>010</td>
</tr>
<tr>
<td>AES-CCM-64</td>
<td>011</td>
</tr>
<tr>
<td>AES-CCM-32</td>
<td>100</td>
</tr>
<tr>
<td>AES-CBC-MAC-128</td>
<td>101</td>
</tr>
<tr>
<td>AES-CBC-MAC-64</td>
<td>110</td>
</tr>
<tr>
<td>AES-CBC-MAC-32</td>
<td>111</td>
</tr>
</tbody>
</table>

4. Encrypt and transmit the packet by setting the Security Enable (TXxSECEN) = 1 and Trigger (TXxTRIG) bits = 1 for the respective TX FIFO, as shown in Table 3-23.

5. Depending on which TX FIFO the secure packet was transmitted from, the status of the transmission is read as,

TX Normal FIFO – A TXNIF (INTSTAT 0x31<0>) interrupt will be issued. The TXNSTAT (TXSTAT 0x24<0>) bit indicates the status of the transmission:

- TXNSTAT = 0: Transmission was successful
- TXNSTAT = 1: Transmission failed, retry count exceeded

The number of retries of the most recent transmission is contained in the TXNRETRY (TXSTAT 0x24<7:6>) bits. The CCAFAIL (TXSTAT 0x24<5>) bit = 1 indicates if the failed transmission was due to the channel busy (CSMA-CA timed out).

TX GTSx FIFO – A TXG1IF (INTSTAT 0x31<1>) or TXG2IF (INTSTAT 0x31<2>) interrupt will be issued. The TXG1STAT (TXSTAT 0x24<1>) or TXG2STAT (TXSTAT 0x24<2>) bit indicates the status of the transmission:

- TXGxSTAT = 1: Transmission was successful
- TXGxSTAT = 0: Transmission failed, retry count exceeded

The number of retries of the most recent transmission is contained in the TXG1RETRY (TXG1CON 0x1C<7:6>) or TXG2RETRY (TXG2CON 0x1D<7:6>) bits. The CCAFAIL (TXSTAT 0x24<5>) bit = 1 indicates if the failed transmission was due to the channel busy (CSMA-CA timed out). The TXG1FNT (TXSTAT 0x24<3>) or TXG2FNT (TXSTAT 0x24<4>) bit = 1 indicates if TX GTSx FIFO transmission failed due to not enough time to transmit in the guaranteed time slot.
3.17.2 MAC SUBLAYER RECEIVE

DECRYPTION

To receive and decrypt a secured frame from the RXFIFO, perform the following steps:

1. When a packet is received and the security enable bit = 1 in the frame control field, the RXFIFO, perform the following steps:

2. If the decryption should be ignored, set the SECIGNORE (SECCON0 0x2C<7>) bit = 1. The encrypted packet can be discarded or read from the RXFIFO and processed in the upper layers.

3. The host microcontroller loads the security key into the RX FIFO Security Key memory location as shown in Table 3-25.

Table 3-25: Decryption Security Key and Control Register Bits

<table>
<thead>
<tr>
<th>FIFO</th>
<th>Security Key Memory Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX FIFO</td>
<td>0x2B0-0x2BF</td>
</tr>
</tbody>
</table>

4. Select the security suite and program the RXCIPHER (SECCON0 0x2C<5:3>) bits. The security suite selection values are shown in Table 3-24.

5. Start the decryption by setting the SECSTART (SECCON0 0x2C<6>) bit = 1.

6. When the decryption process is complete, a Receive Interrupt (RXIF 0x31<3>) is issued.

7. Check the decryption status by reading SECDECERR (RXSR 0x30<2>)

 - SECDECERR = 0: No Decryption Error
 - SECDECERR = 1: Decryption Error

Note: If decryption error has occurred and the packet in the FIFO needs to be discarded, then set RXFLUSH (RXFLUSH 0x0D<0>) bit = 1.
3.17.3 UPPER LAYER ENCRYPTION

To encrypt an upper layer frame, perform the following steps:

1. The host microcontroller loads the TXNFIFO with the upper layer frame for encryption into the TXNFIFO using the format shown in Figure 3-23. The header length field indicates the number of octets (bytes) that is not encrypted.

Note:

The header length field, as implemented in the MRF24J40, is 5 bits long. Therefore, the header length maximum value is 31 octets (bytes). This conforms to the IEEE 802.15.4-2003 Specification. However, it does not conform to the IEEE 802.15.4-2006 Standard. The work around is to:

- Use a header length no longer than 31 octets (bytes)
- Implement a security algorithm in the upper layers

FIGURE 3-23: UPPER LAYER ENCRYPTION AND DECRYPTION FORMAT

<table>
<thead>
<tr>
<th>TX FIFO</th>
<th>Length (m)</th>
<th>Frame Length (m + n)</th>
<th>Upper Layer Encryption</th>
<th>Header</th>
<th>Data Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>m</td>
<td>1</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

2. The host microcontroller loads the 13-byte NONCE value into the UPNONCE12 through UPNONCE0 (0×240 through 0×24C) registers.

3. Program the 128-bit security key into the TX Normal FIFO Security Key FIFO memory address, 0×280 through 0×28F.

4. Select the security suite and program the TXNCHPHER (SECCON0 0×2C<2:0>) bits. The security suite selection values are shown in Table 3-24.

5. Enable Upper Layer Security Encryption mode by setting the UPENC (SECCR2 0×37<6>) bit = 1.

6. Encrypt the frame by setting the TXNTRIG (TXNCON 0×1B<0>) bit and TXNSECEN (TXNCON 0×1B<1>) to 1.

7. A TXNIF (INTSTAT 0×31<0>) interrupt will be issued. The TXNSTAT (TXSTAT 0×24<0>) bit = 0 indicates the encryption has completed.

8. The encrypted frame is available in the TXNFIFO and can be read by the host microcontroller.

Application Hint: The encryption can be checked by decrypting the frame data (refer **Section 3.17.4 “Upper Layer Decryption”**) and comparing it to the original frame data.
3.17.4 UPPER LAYER DECRYPTION

To decrypt an upper layer frame, perform the following steps:

1. The host microcontroller loads the TXNFI O with the upper layer frame for decryption into the TXNFI O, using the format shown in Figure 3-23. The header length field indicates the number of octets (bytes) that are not encrypted.

2. The host microcontroller loads the 13-byte NONCE value into the UPNONCE12 through UPNONCE0 (0x240 through 0x24C) registers.

Note: The header length field, as implemented in the MRF24J40, is 5-bits long. Therefore, the header length maximum value is 31 octets (bytes). This conforms to the IEEE 802.15.4-2003 Specification. However, it does not conform to the IEEE 802.15.4-2006 Standard. The work around is to:
 - Use a header length no longer than 31 octets (bytes)
 - Implement a security algorithm in the upper layers

3. Program the 128-bit security key into the TX Normal FIFO Security Key FIFO memory address, 0x280 through 0x28F.

4. Select the security suite and program the TXNCRYPT (SECCON0 0x0C<2:0>) bits. The security suite selection values are shown in Table 3-24.

5. Enable Upper Layer Security Decryption mode by setting the UPDEP (SECCON1 0x0D<7>) bit = 1.

6. Start Decrypting the frame by setting the TXNTRIG (TXNCON 0x1B<0>) bit to 1.

7. A TXNIF (INTSTAT 0x31<0>) interrupt will be issued. The TXNIF (TXSTAT 0x24<0>) bit = 0 indicates that the decryption process has completed.

8. Check if a MIC error occurred by reading the UPSECERR (0x30<6>) bit:
 UPSECERR = 0: No MIC error
 UPSECERR = 1: MIC error occurred; write ‘1’ to clear error

9. The decrypted frame is available in the TXNFI O and can be read by the host microcontroller.

Table 3-26: Registers Associated with Security

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1A</td>
<td>TXBCON0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXBSECEN</td>
</tr>
<tr>
<td>0x1B</td>
<td>TXCON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>FPSTAT</td>
<td>INDIRECT</td>
<td>TXNACKREQ</td>
<td>TXNSECEN</td>
</tr>
<tr>
<td>0x1C</td>
<td>TXG1CON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>CCAFAIL</td>
</tr>
<tr>
<td>0x1D</td>
<td>TXG2CON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG2FNT</td>
</tr>
<tr>
<td>0x1E</td>
<td>TXSTAT</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG2SLOT1</td>
</tr>
<tr>
<td>0x1F</td>
<td>TXG2CON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG2SLOT0</td>
</tr>
<tr>
<td>0x20</td>
<td>SECCON0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1FNT</td>
</tr>
<tr>
<td>0x21</td>
<td>SECCON1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG2SLOT1</td>
</tr>
<tr>
<td>0x22</td>
<td>RXSR</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG2SLOT0</td>
</tr>
<tr>
<td>0x23</td>
<td>INTSTAT</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1CON</td>
</tr>
<tr>
<td>0x24</td>
<td>UPCON</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1CON</td>
</tr>
<tr>
<td>0x25</td>
<td>TXG2Cipher2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher2</td>
</tr>
<tr>
<td>0x26</td>
<td>TXG1Cipher2</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher0</td>
</tr>
<tr>
<td>0x27</td>
<td>TXG1Cipher0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher1</td>
</tr>
<tr>
<td>0x28</td>
<td>TXG1Cipher1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher0</td>
</tr>
<tr>
<td>0x29</td>
<td>TXG1Cipher0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher1</td>
</tr>
<tr>
<td>0x2A</td>
<td>TXG1Cipher1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher0</td>
</tr>
<tr>
<td>0x2B</td>
<td>TXG1Cipher0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher1</td>
</tr>
<tr>
<td>0x2C</td>
<td>TXG1Cipher1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher0</td>
</tr>
<tr>
<td>0x2D</td>
<td>TXG1Cipher0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher1</td>
</tr>
<tr>
<td>0x2E</td>
<td>TXG1Cipher1</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher0</td>
</tr>
<tr>
<td>0x2F</td>
<td>TXG1Cipher0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>TXG1Cipher1</td>
</tr>
</tbody>
</table>

© 2010 Microchip Technology Inc.
3.18 Turbo Mode

The MRF24J40 provides a Turbo mode to transmit and receive at 625 kbps (2.5 times 250 kbps). This mode enables higher data rates for proprietary protocols.

To configure the MRF24J40 for Turbo mode, perform the following steps:

1. Enable Turbo mode by setting the TURBO (BBREG0 0x38<0>) bit = 1.

2. Set the baseband parameter, PREVALIDTH (BBREG3 0x3B<7:4>) bits = 0011.

3. Set baseband parameter, CSTH (BBREG4 0x3C<7:5>) bits = 010.

4. Perform a baseband circuitry Reset, RSTBB (SOFTRST 0x2A<1>) = 1.

TABLE 3-27: REGISTERS ASSOCIATED WITH TURBO MODE

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2A</td>
<td>SOFTRST</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x38</td>
<td>BBREG0</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>0x3B</td>
<td>BBREG3</td>
<td>PREVALIDTH3</td>
<td>PREVALIDTH2</td>
<td>PREVALIDTH1</td>
<td>PREVALIDTH0</td>
<td>PREDETTH2</td>
<td>PREDETTH1</td>
<td>PREDETTH0</td>
<td>r</td>
</tr>
<tr>
<td>0x3C</td>
<td>BBREG4</td>
<td>CSTH2</td>
<td>CSTH1</td>
<td>CSTH0</td>
<td>PRECNT2</td>
<td>PRECNT1</td>
<td>PRECNT0</td>
<td>r</td>
<td>r</td>
</tr>
</tbody>
</table>
4.0 APPLICATIONS

4.1 Antenna/Balun

Figure 4-1 is an example of the circuit diagram of a balun to match to a 50Ω antenna. A balun is the impedance transformer from unbalanced input of the PCB antenna and the balanced input of the RF transceiver (pins RFP and RFN).

Figure 4-2 shows the measured impedance of the balun where the center of the band is very close to 50Ω. When using low tolerance components (i.e., ±5%) along with an appropriate ground, the impedance will remain close to the 50Ω measurement.
4.2 External PA/LNA Control

External PA, LNA and RF switches can be controlled by the MRF24J40 internal RF state machine. Figure 4-3 shows a typical application circuit with external PA, LNA and RF switches. Setting TESTMODE (0x22F<2:0>) bits to '111' will configure pins, GPIO0, GPIO1 and GPIO2, to operate according to Table 4-1. The external PA/LNA timing diagram is shown in Figure 4-4.

TABLE 4-1: GPIO EXTERNAL PA/LNA SIGNALING

<table>
<thead>
<tr>
<th>GPIO</th>
<th>Receive</th>
<th>Transmit</th>
<th>Maximum Current Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIO0</td>
<td>Low</td>
<td>High</td>
<td>4 ma</td>
</tr>
<tr>
<td>GPIO1</td>
<td>Low</td>
<td>High</td>
<td>1 ma</td>
</tr>
<tr>
<td>GPIO2</td>
<td>High</td>
<td>Low</td>
<td>1 ma</td>
</tr>
</tbody>
</table>

FIGURE 4-3: EXTERNAL PA/LNA BLOCK DIAGRAM

![External PA/LNA Block Diagram](image-url)
FIGURE 4-4: EXTERNAL PA/LNA TIMING DIAGRAM

TABLE 4-2: REGISTERS ASSOCIATED WITH EXTERNAL PA/LNA

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x15</td>
<td>SYMTICKH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x16</td>
<td>PACON0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x17</td>
<td>PACON1</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x18</td>
<td>PACON2</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2E</td>
<td>TXSTBL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2F</td>
<td>TESTMODE</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RF Stabilization Time (t_{RFSTBL}) = RFSTBL * 16 µs
144 µs = 9 * 16 µs

Transmit On Time (t_{TXON}) = TXONT * 16 µs + TXONT * 50 ns
98 µs = 6 * 16 µs + 40 * 50 ns

PA On Time (t_{PAON}) = PAONT * 16 µs + PAONT + 50 ns
18.05 µs = 1 * 16 µs + 41 * 50 ns

Rule: $t_{RFSTBL} > t_{TXON} > t_{PAON}$
4.3 PCB Layout Design

The following guidelines are intended to aid users in high-frequency PCB layout design.

The printed circuit board is comprised of four basic FR4 layers: signal layout, RF ground, power line routing and ground (see Figure 4-5). The guidelines will explain the requirements of these layers.

FIGURE 4-5: FOUR BASIC COPPER FR4 LAYERS

- It is important to keep the original PCB thickness since any change will affect antenna performance (see total thickness of dielectric) or microstrip lines characteristic impedance.
- The first layer width of a 50Ω characteristic impedance microstrip line is 12 mils.
- Avoid having microstrip lines longer than 2.5 cm, since that line might get very close to a quarter wave length of the working frequency of the board which is 3.0 cm, and start behaving as an antenna.
- Except for the antenna layout, avoid sharp corners since they can act as an antenna. Round corners will eliminate possible future EMI problems.
- Digital lines by definition are prone to be very noisy when handling periodic waveforms and fast clock-switching rates. Avoid laying out a RF signal close to any digital lines.
- A via filled ground patch underneath the IC transceiver is mandatory.
- A power supply must be distributed to each pin in a star topology and low-ESR capacitors must be placed at each pin for proper decoupling noise.
- Thorough decoupling on each power pin is beneficial for reducing in-band transceiver noise, particularly when this noise degrades performance. Usually, low value caps (27-47 pF) combined with large value caps (100 nF) will cover a large spectrum of frequency.
- Passive components (inductors) must be in the high-frequency category and the SRF (Self-Resonant Frequency) should be at least two times higher than the operating frequency.

Note: Care should be taken with all ground lines to prevent breakage.
4.4.2 BILL OF MATERIALS

TABLE 4-3: MRF24J40 BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>Chip Capacitor 0402 COG 0.5P</td>
</tr>
<tr>
<td>C3</td>
<td>Chip Capacitor 0402 X7R 10N</td>
</tr>
<tr>
<td>C4</td>
<td>Chip Capacitor 0402 COG 47P</td>
</tr>
<tr>
<td>C5</td>
<td>Chip Capacitor 0402 COG 47P</td>
</tr>
<tr>
<td>C6</td>
<td>Chip Capacitor 0402 COG 47P</td>
</tr>
<tr>
<td>C7</td>
<td>Chip Capacitor 0402 X7R 10N</td>
</tr>
<tr>
<td>C8</td>
<td>Chip Capacitor 0402 X5R 1U</td>
</tr>
<tr>
<td>C9</td>
<td>Chip Capacitor 0402 COG 100P</td>
</tr>
<tr>
<td>C10</td>
<td>Chip Capacitor 0402 COG 47P</td>
</tr>
<tr>
<td>C11</td>
<td>Chip Capacitor 0402 X5R 100N</td>
</tr>
<tr>
<td>C12</td>
<td>Chip Capacitor 0402 X5R 100N</td>
</tr>
<tr>
<td>C13</td>
<td>Chip Capacitor 0402 COG 47P</td>
</tr>
<tr>
<td>C14</td>
<td>Chip Capacitor 0402 COG 0.5P</td>
</tr>
<tr>
<td>C15</td>
<td>Chip Capacitor 0402 COG 0.5P</td>
</tr>
<tr>
<td>C16</td>
<td>Chip Capacitor 0402 COG 0.5P</td>
</tr>
<tr>
<td>C17</td>
<td>Chip Capacitor 0402 COG 0.3P</td>
</tr>
<tr>
<td>C18</td>
<td>Chip Capacitor 0402 COG 18P</td>
</tr>
<tr>
<td>C19</td>
<td>Chip Capacitor 0402 COG 18P</td>
</tr>
<tr>
<td>IC1</td>
<td>MRF24J40-I/ML</td>
</tr>
<tr>
<td>IC2</td>
<td>Buffer, SC70 Package, NC7SZ125P5X</td>
</tr>
<tr>
<td>L1</td>
<td>Chip Inductor 0402 10N</td>
</tr>
<tr>
<td>L2</td>
<td>Chip Inductor 0402 10N</td>
</tr>
<tr>
<td>L3</td>
<td>Chip Inductor 0402 5.6N</td>
</tr>
<tr>
<td>L4</td>
<td>Chip Inductor 0402 4.7N</td>
</tr>
<tr>
<td>R1</td>
<td>Not Placed</td>
</tr>
<tr>
<td>X1</td>
<td>20 MHz Crystal, Abracon P/N ABM8 - 156 - 20.000MHz - T</td>
</tr>
</tbody>
</table>
5.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature under bias</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-65°C to +150°C</td>
</tr>
<tr>
<td>Voltage on any combined digital and analog pin with respect to Vss (except VDD)</td>
<td>-0.5V to (VDD + 0.5V)</td>
</tr>
<tr>
<td>Voltage on VDD with respect to VSS</td>
<td>-0.3V to 3.6V</td>
</tr>
<tr>
<td>Maximum output current sunk by GPIO1-GPIO5 pins</td>
<td>-1 mA</td>
</tr>
<tr>
<td>Maximum output current sourced by GPIO1-GPIO5 pins</td>
<td>1 mA</td>
</tr>
<tr>
<td>Maximum output current sunk by GPIO0 pin</td>
<td>4 mA</td>
</tr>
<tr>
<td>Maximum output current sourced by GPIO0 pin</td>
<td>4 mA</td>
</tr>
</tbody>
</table>

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
TABLE 5-1: RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Operating Temperature</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Supply Voltage for RF, Analog and Digital Circuits</td>
<td>2.4</td>
<td>—</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Supply Voltage for Digital I/O</td>
<td>2.4</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Input High Voltage (VIH)</td>
<td>0.5 x VDD</td>
<td>—</td>
<td>VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Input Low Voltage (VIL)</td>
<td>-0.3</td>
<td>—</td>
<td>0.2 x VDD</td>
<td>V</td>
</tr>
</tbody>
</table>

TABLE 5-2: CURRENT CONSUMPTION

Typical Values: $TA = 25°C$, $VDD = 3.3V$

<table>
<thead>
<tr>
<th>Chip Mode</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep</td>
<td>Sleep Clock Disabled</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>μA</td>
</tr>
<tr>
<td>TX</td>
<td>At maximum output power</td>
<td>—</td>
<td>23</td>
<td>—</td>
<td>mA</td>
</tr>
<tr>
<td>RX</td>
<td></td>
<td>—</td>
<td>19</td>
<td>—</td>
<td>mA</td>
</tr>
</tbody>
</table>

TABLE 5-3: RECEIVER AC CHARACTERISTICS

Typical Values: $TA = 25°C$, $VDD = 3.3V$, LO Frequency = 2.445 GHz

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input Frequency</td>
<td>—</td>
<td>2.405</td>
<td>—</td>
<td>2.480</td>
<td>GHz</td>
</tr>
<tr>
<td>RF Sensitivity</td>
<td>At antenna input with O-QPSK signal and 3.5 dB front end loss is assumed</td>
<td>—</td>
<td>-95</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>Maximum RF Input</td>
<td>LNA at high gain</td>
<td>+5</td>
<td>—</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>LO Leakage</td>
<td>Measured at balun matching network input at frequency 2.405-2.48 GHz</td>
<td>—</td>
<td>-60</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>Noise Figure (including matching)</td>
<td></td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Adjacent Channel Rejection</td>
<td>@ +/- 5 MHz</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Alternate Channel Rejection</td>
<td>@ +/- 10 MHz</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>RSSI Range</td>
<td></td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>RSSI Error</td>
<td></td>
<td>—</td>
<td>-5</td>
<td>5</td>
<td>dB</td>
</tr>
</tbody>
</table>
TABLE 5-4: TRANSMITTER AC CHARACTERISTICS

Typical Values: Ta = 25°C, VDD = 3.3V, LO Frequency = 2.445 GHz

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Carrier Frequency</td>
<td></td>
<td>2.405</td>
<td>—</td>
<td>2.480</td>
<td>GHz</td>
</tr>
<tr>
<td>Maximum RF Output Power</td>
<td></td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>RF Output Power Control Range</td>
<td></td>
<td>—</td>
<td>36</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>TX Gain Control Resolution</td>
<td>Programmed by register</td>
<td>—</td>
<td>1.25</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>Carrier Suppression</td>
<td></td>
<td>—</td>
<td>—</td>
<td>-30</td>
<td>dBc</td>
</tr>
<tr>
<td>TX Spectrum Mask for O-QPSK Signal</td>
<td>Offset frequency > 3.5 MHz, at 0 dBm output power</td>
<td>-33</td>
<td>—</td>
<td>—</td>
<td>dBm</td>
</tr>
<tr>
<td>TX EVM</td>
<td></td>
<td>—</td>
<td>13</td>
<td>—</td>
<td>%</td>
</tr>
</tbody>
</table>

FIGURE 5-1: EXAMPLE SPI SLAVE MODE TIMING

![Example SPI Slave Mode Timing Diagram]

TABLE 5-5: EXAMPLE SPI SLAVE MODE REQUIREMENTS

<table>
<thead>
<tr>
<th>Param No.</th>
<th>Symbol</th>
<th>Characteristic</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>TssL2scH</td>
<td>CS ↓ to SCK ↑ Input</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>71</td>
<td>TscH</td>
<td>SCK Input High Time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>72</td>
<td>TscL</td>
<td>SCK Input Low Time</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>74</td>
<td>TscH2oIL</td>
<td>Hold Time of SDI Data Input to SCK Edge</td>
<td>25</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>75</td>
<td>TdoR</td>
<td>SDO Data Output Rise Time</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>76</td>
<td>TdoF</td>
<td>SDO Data Output Fall Time</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>78</td>
<td>TscR</td>
<td>SCK Output Rise Time (Master mode)</td>
<td>—</td>
<td>25</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>80</td>
<td>TscH2oDV, TscL2oDV</td>
<td>SDO Data Output Valid after SCK Edge</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>82</td>
<td>TssL2oDV</td>
<td>SDO Data Output Valid after CS ↓ Edge</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
<tr>
<td>83</td>
<td>TscL2ssH</td>
<td>CS ↑ after SCK Edge</td>
<td>50</td>
<td>—</td>
<td>ns</td>
<td>—</td>
</tr>
</tbody>
</table>
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

40-Lead QFN

![Microchip Logo] XXXXXXXXXX
 XXXXXXXXXX
 XXXXXXXXXX
 YYWWNNN

Example

![Microchip Logo] MRF24J40
 -I/ML 03
 0810017

Legend:
- XX...X Product-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week '01')
- NNN Alphanumeric traceability code
- 03 Pb-free JEDEC designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (03) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
6.2 Package Details

The following sections give the technical details of the packages.

40-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6x0.9 mm Body [QFN] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. Theoretically exact value shown without tolerances, for information purposes only.

Microchip Technology Drawing C04-118C
APPENDIX A: REVISION HISTORY

Revision B (October 2008)
Rewritten the entire data sheet.

Revision C (August 2010)
This document includes the updated technical information.
INDEX

A
- Absolute Maximum Ratings ... 135
- AC Characteristics
 - Receiver .. 136
 - Transmitter ... 137
- Acknowledgement .. 112
- Associated Registers .. 113
- Antenna/Balun .. 129
- Applications .. 129
- External PA/LNA Control ... 130

B
- Battery Monitor .. 114
- Beacon-Enabled Network ... 93
- Bill of Materials .. 134

Block Diagrams
- 20 MHz Main Oscillator Crystal Circuit 8
- 32 kHz External Oscillator Crystal Circuit 9
- Beacon-Enabled Coordinator Sleep Time Line 118
- Beacon-Enabled Device Sleep Time Line 119
- Example Circuit .. 129
- External PA/LNA .. 130
- IEEE 802.15.4 PHY Packet and MAC
 - Frame Structure .. 4
 - Interrupt Logic .. 87
- MRF24J40 Architecture ... 6
- Nonbeacon-Enabled (Coordinator or Device)
 - Sleep Time Line .. 120
 - Sleep Clock Generation 115
 - Sleep Mode Counters .. 117
 - Superframe Structure ... 94
 - Wireless Node .. 3

C
- CCA
 - Associated Registers ... 89
 - Mode 1 .. 89
 - Mode 2 .. 89
 - Mode 3 .. 89
- Channel Selection .. 88
 - Associated Registers ... 88
- Clear Channel Assessment (CCA) 89
- Control Register Description 14
- Control Registers
 - Mapping, Long Address ... 14
 - Mapping, Short Address ... 14
 - CSMA-CA .. 99
 - Associated Registers ... 101
 - Slotted Mode .. 100
 - Unslotted Mode .. 99
- Current Consumption .. 136
- Customer Change Notification Service
 - Service .. 146
 - Service .. 146
- Customer Notification Service 146
- Customer Support .. 146

D
- Device Overview .. 3, 85

E
- Electrical Characteristics ... 135
- Energy Detection (ED) ... 90
- Errata .. 2
- Example SPI Slave Mode Requirements 137

External PA/LNA
- Associated Registers ... 131

G
- Generation .. 115
- GTSFIFO State Diagram ... 95

H
- Hardware Description .. 5

I
- IEEE 802.15.4-2003 Standard ... 4
- Impedance
 - Measured .. 129
- Initialization .. 86
 - Associated Registers ... 86
- Interframe Spacing (IFS) ... 102
 - Associated Registers ... 102
- Internet Address .. 146
- Interrupts .. 87

L
- Link Quality Indication (LQI) ... 93

N
- Nonbeacon-Enabled Network ... 93

O
- Oscillator
 - 100 kHz Internal .. 9
 - 20 MHz Main .. 8
 - 23 kHz External Crystal ... 8

Packaging .. 139
- Details .. 140
- Marking .. 139

PCB
- Layout Design .. 132
- Phase-Locked Loop (PLL) ... 8

P
- Pin Descriptions .. 7
 - CS (Serial Interface Enable) ... 7
 - GND (Ground, Digital Circuit) ... 7
 - GND (Ground, PLL) ... 7
 - GND (Guard Ring Ground) ... 7
 - GPIO0 (External PA Enable) ... 7
 - GPIO1 (External TX/RX Switch Control) ... 7
 - GPIO2 (External TX/RX Switch Control) ... 7
 - GPIO3 (General Purpose Digital I/O) ... 7
 - GPIO4 (General Purpose Digital I/O) ... 7
 - GPIO5 (General Purpose Digital I/O) ... 7
 - INT (Interrupt Pin) ... 7
 - LCAP (PLL Loop Filter External Capacitor) ... 7
 - LPOSC1 (32 kHz Crystal Input) ... 7
 - LPOSC2 (32 kHz Crystal Input) ... 7
 - NC (No Connection) ... 7

© 2010 Microchip Technology Inc.
Preliminary
DS39776C-page 149
MRF24J40

OSC1 (20 MHz Crystal Input) .. 7
OSC2 (20 MHz Crystal Input) .. 7
RESET (Global Hardware Reset Active-Low) 7
RFN (Differential RF Pin, Negative) ... 7
RFP (Differential RF Pin, Positive) .. 7
SCK (Serial Interface Clock) ... 7
SDI (Serial Interface Data Input) ... 7
SDO (Serial Interface Data Output) ... 7
Vdd (Charge Pump Power Supply) ... 7
Vdd (Digital Circuit Power Supply) ... 7
Vdd (Guard Ring Power Supply) .. 7
Vdd (PLL Power Supply) ... 7
Vdd (Power Supply, Analog Circuit) ... 7
Vdd (Power Supply, Band Gap Reference Circuit) 7
Vdd (RF Power Supply) .. 7
Vdd (VCO Supply) ... 7
WAKE (External Wake-up Trigger) .. 7

Pins
General Purpose Input/Output (GPIO) 9
Interrupt (INT) ... 9
Reset (RESET) ... 9
Serial Peripheral Interface (SPI) .. 10
Wake (WAKE) ... 9

Power and Ground Pins ... 8
Power Management
Associated Registers ... 114

Proprietary Protocols
MiWi .. 1
MiWi P2P .. 1
ZigBee .. 1

Proprietary Wireless Networking Protocols 1

R
Reader Response ... 147
Received Signal Strength Indicator (RSSI) 90
Reception
Acknowledgement Request .. 103
Associated Registers ... 105
Interrupt ... 104
Modes ... 104
Error ... 104
Normal ... 104
Promiscuous ... 104

Recommended Operating Conditions 136

Registers
ACKTMOUT (MAC ACK Time-out Duration) 27
ASSOEADR0 (Associated Coordinator)
 Addressed Address 0) .. 72
ASSOEADR1 (Associated Coordinator)
 Addressed Address 1) .. 72
ASSOEADR2 (Associated Coordinator)
 Addressed Address 2) .. 72
ASSOEADR3 (Associated Coordinator)
 Addressed Address 3) .. 73
ASSOEADR4 (Associated Coordinator)
 Addressed Address 4) .. 73
ASSOEADR5 (Associated Coordinator)
 Addressed Address 5) .. 74
ASSOEADR6 (Associated Coordinator)
 Addressed Address 6) .. 74
ASSOEADR7 (Associated Coordinator)
 Addressed Address 7) .. 75
ASSOSADR0 (Associated Coordinator)
 Short Address 0) ... 76

ASSOSADR1 (Associated Coordinator)
 Short Address 1) ... 76
BBREG0 (Baseband 0) ... 55
BBREG1 (Baseband 1) ... 55
BBREG2 (Baseband 2) ... 56
BBREG3 (Baseband 3) ... 56
BBREG4 (Baseband 4) ... 57
BBREG6 (Baseband 6) ... 57
CCAEDTH (Energy Detection Threshold for CCA) 58

EADRO (Extended Address 0) ... 21
EADRO (Extended Address 1) ... 21
EADRO (Extended Address 2) ... 21
EADRO (Extended Address 3) ... 22
EADRO (Extended Address 4) ... 22
EADRO (Extended Address 5) ... 22
EADRO (Extended Address 6) ... 23
EADRO (Extended Address 7) ... 23
ESLOTG1 (GTS1 and CAP End Slot) 28
ESLOTG23 (End Slot of GTS3 and GTS2) 35
ESLOTG45 (End Slot of GTS5 and GTS4) 35
ESLOTG67 (End Slot of GTS6) ... 35
FRMOFFSET (Superframe Counter Offset to Align Beacon) 38

GATECLK (Gated Clock Control) ... 41
GPIO (GPIO Port) ... 51
HSYMTMRH (Half Symbol Timer High Byte) 43
HSYMTMRL (Half Symbol Timer Low Byte) 43
INCR (Interrupt Control) .. 50
INSTRAT (Interrupt Status) .. 49
MAINCNT0 (Main Counter 0) .. 69
MAINCNT1 (Main Counter 1) .. 69
MAINCNT2 (Main Counter 2) .. 70
MAINCNT3 (Main Counter 3) .. 70
ORDER (Beacon and Superframe Order) 25
PACON0 (Power Amplifier Control 0) 30
PACON1 (Power Amplifier Control 1) 30
PACON2 (Power Amplifier Control 2) 31
PANIDH (PAN ID High Byte) ... 19
PANIDL (PAN ID Low Byte) .. 19
REMNCNTH (Remain Counter High) 68
REMNCNL (Remain Counter Low) 68
RFCON0 (RF Control 0) .. 59
RFCON1 (RF Control 1) .. 59
RFCON2 (RF Control 2) .. 60
RFCON3 (RF Control 3) .. 60
RFCON5 (RF Control 5) .. 61
RFCON6 (RF Control 6) .. 61
RFCON7 (RF Control 7) .. 62
RFCON8 (RF Control 8) .. 62
RFCON9 (RF Mode Control) ... 53
RFSATE (RF State) .. 65
RSSI (Averaged RSSI Value) .. 65
RXFLUSH (Receive FIFO Flush) .. 24
RXMCR (Receive MAC Control) .. 18
RXSR (RX MAC Status) ... 48
SADR (Short Address High Byte) ... 20
SADRL (Short Address Low Byte) ... 20
SECCON0 (Security Control 0) .. 45
SECCON1 (Security Control 1) .. 46
SECR (Security Control 2) .. 54
SLPACK (Sleep Acknowledgement and Wake-up Counter) 52
SLPCAL0 (Sleep Calibration 0) .. 63
SLPCAL1 (Sleep Calibration 1) .. 63
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To: Technical Publications Manager
RE: Reader Response

From: Name ________________________________
Company ________________________________
Address ________________________________
City / State / ZIP / Country ________________________________
Telephone: (______) _________ - _________
FAX: (______) _________ - _________

Application (optional):

Would you like a reply? ___ Y ___ N

Device: MRF24J40
Literature Number: DS39776C

Questions:

1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this document easy to follow? If not, why?

4. What additions to the document do you think would enhance the structure and subject?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Temperature Range</td>
<td>Package</td>
<td>Pattern</td>
</tr>
<tr>
<td>MRF24J40: IEEE 802.15.4™ 2.4 GHz RF Transceiver</td>
<td>I = -40°C to +85°C (Industrial)</td>
<td>ML = QFN (Plastic Quad Flat, No Lead)</td>
<td>T = Tape and Reel</td>
</tr>
</tbody>
</table>

Example:

a) MRF24J40-I/ML: Industrial temperature, QFN package.
b) MRF24J40T-I/ML: Industrial temperature, QFN package, tape and reel.
WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xi'an
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820