1B [

1A [2

2Y [5

2A [6 2B 🛛 7

GND [

1,2EN [

3 1Y []

4

8

SLLS171G - OCTOBER 1993 - REVISED MARCH2009

16 🛛 V_{CC}

15 4B

14 4A

13 4Y

11 3Y

10 3A

9]] 3B

12 3,4EN

D, DW, OR N PACKAGE (TOP VIEW)

- Meets or Exceeds the EIA Standards RS-422-A, RS-423-A, RS-485, and CCITT **Recommendation V.11**
- **Designed to Operate With Pulse Durations** as Short as 20 ns
- **Designed for Multipoint Transmission on** Long Bus Lines in Noisy Environments
- Input Sensitivity . . . ±200 mV
- Low-Power Consumption . . . 20 mA Max
- **Open-Circuit Fail-Safe Design**
- **Common-Mode Input Voltage Range of** -7 V to 12 V
- Pin Compatible With SN75175 and LTC489

description

The SN65LBC175 and SN75LBC175 are monolithic, guadruple, differential line receivers with 3-state outputs designed to meet the requirements of the EIA standards RS-422-A, RS-423-A, RS-485, and CCITT Recommendation V.11. The devices are optimized for balanced multipoint bus transmission at data rates up to and exceeding 10 million bits per second. The receivers are enabled in pairs, with an active-high enable input. Each differential receiver input features high impedance, hysteresis for increased noise immunity, and sensitivity of ±200 mV over a common-mode input voltage range of 12 V to -7 V. The fail-safe design ensures that when the inputs are open-circuited, the outputs are always high. Both devices are designed using the TI proprietary LinBiCMOS™technology allowing low power consumption, high switching speeds, and robustness.

These devices offer optimum performance when used with the SN75LBC172 or SN75LBC174 quadruple line drivers. The SN65LBC175 is available in the 16-pin DIP (N), small-outline package (D), and the wide small-outline package (DW). The SN75LBC175 is available in the 16-pin DIP (N) and the small-outline package (D).

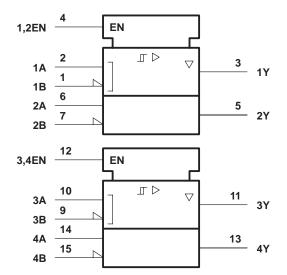
The SN65LBC175 is characterized over the industrial temperature range of -40°C to 85°C. The SN75LBC175 is characterized for operation over the commercial temperature range of 0°C to 70°C.

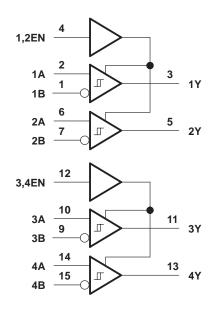
DAOKAOE	TEMPERATURE RANGE								
PACKAGE	0°C to 70°C	–40°C to 85°C							
SOIC	SN75LBC175D	SN65LBC175D							
Wide SOIC	—	SN65LBC175DW							
PDIP	SN75LBC175N	SN65LBC175N							

AVAILABLE OPTIONS

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS is a trademark of Texas Instruments.

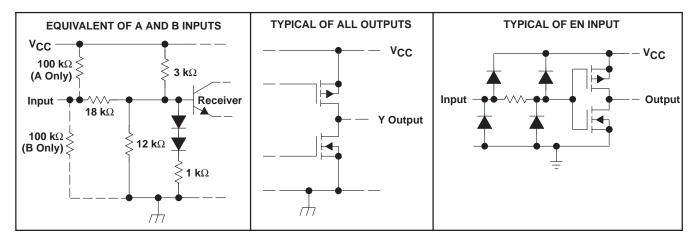

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 2009 Texas Instruments Incorporated

SLLS171G – OCTOBER 1993 – REVISED MARCH2009

logic symbol[†]

logic diagram (positive logic)


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE	Ξ
(each receiver)	

DIFFERENTIAL INPUTS A-B	ENABLE	OUTPUT Y							
$V_{ID} \ge 0.2 V$	Н	Н							
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	Н	?							
$V_{ID} \le -0.2 V$	Н	L							
Х	L	Z							
Open circuit	Н	Н							

H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate

schematics of inputs and outputs

SLLS171G - OCTOBER 1993 - REVISED MARCH2009

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1) Input voltage, V _I (A or B inputs) Differential input voltage, V _{ID} (see Note 2)	±25 V
Voltage range at Y, 1/2EN, 3/4EN	
Continuous total dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A : SN65LBC175	–40°C to 85°C
SN75LBC175	0°C to 70°C
Storage temperature range, T _{stg}	–65°C to 150°C
Electrostatic Discharge (ESD): Human Body Model (HBM)	
Machine Model (MM)	
Charged Device Model (CDM)	1.5 kV

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to GND.

2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	1100 mW	8.7 mW/°C	709 mW	578 mW
DW	1200 mW	9.6 mW/°C	770 mW	625 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW

recommended operating conditions

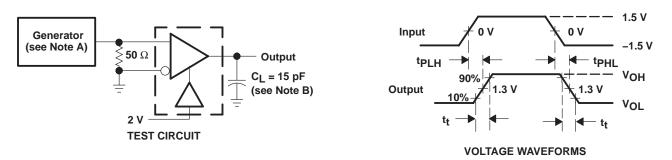
			MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V		
Common-mode input voltage, VIC			-7		12	V
Differential input voltage, VID					±6	V
High-level input voltage, VIH	Ebligante		2			V
Low-level input voltage, VIL	EN Inputs	EN inputs			0.8	V
High-level output current, IOH					-8	mA
Low-level output current, IOL					8	mA
	SN65LBC1	75	-40		85	° 0
Operating free-air temperature, T_A	SN75LBC1	75	0		70	°C

SLLS171G – OCTOBER 1993 – REVISED MARCH2009

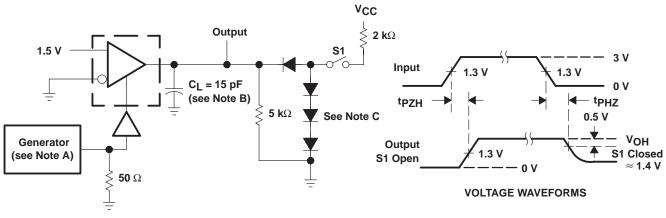
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		ТІ		ONS	MIN	TYP†	MAX	UNIT
VIT+	Positive-going input three	shold voltage	$I_{O} = -8 \text{ mA}$					0.2	V
VIT-	Negative-going input three	shold voltage	IO = 8 mA			-0.2			V
V _{hys}	Hysteresis voltage (VIT-	V _{IT -})					45		mV
VIK	Enable input clamp volta	ge	lı = – 18 mA				-0.9	-1.5	V
Vон	High-level output voltage		V _{ID} = 200 mV,	IOH = -8 m/	A	3.5	4.5		V
VOL	Low-level output voltage		$V_{ID} = -200 \text{ mV},$	I _{OL} = 8 mA			0.3	0.5	V
I _{OZ}	High-impedance-state ou	Itput current	$V_{O} = 0 V$ to V_{CC}					±20	μA
			V _{IH} = 12 V,	V _{CC} = 5 V,	Other inputs at 0 V		0.7	1	
	D i i i i		V _{IH} = 12 V,	$V_{CC} = 0 V,$	Other inputs at 0 V		0.8	1	
1	Bus input current	A or B inputs	$V_{IH} = -7 V$,	V _{CC} = 5 V,	Other inputs at 0 V		-0.5	-0.8	mA
			$V_{IH} = -7 V$,	$V_{CC} = 0 V,$	Other inputs at 0 V		-0.4	-0.8	
Iн	High-level enable input c	urrent	VIH = 5 V					±20	μΑ
١L	Low-level enable input c	urrent	V _{IL} = 0 V					-20	μA
los	DS Short-circuit output current		$V_{O} = 0$				-80	-120	mA
	Cupply ourrept		Outputs enabled,	IO = 0,	V _{ID} = 5 V		11	20	
'CC	ICC Supply current		Outputs disabled				0.9	1.4	mA

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C.

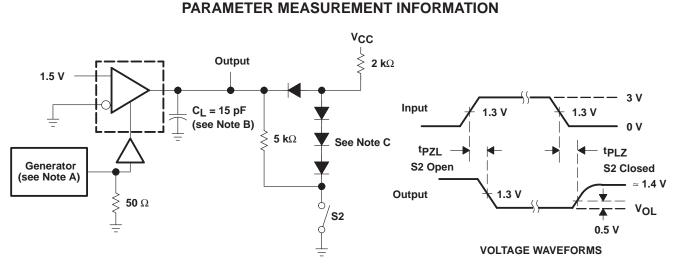

switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
^t PHL	Propagation delay time, high- to low-level output	$V_{ID} = -1.5 V$ to 1.5 V,	11	22	30	ns
^t PLH	Propagation delay time, low- to high-level output	See Figure 1	11	22	30	ns
^t PZH	Output enable time to high level	See Figure 2		17	30	ns
t _{PZL}	Output enable time to low level	See Figure 3		18	30	ns
^t PHZ	Output disable time from high level	See Figure 2		30	40	ns
t _{PLZ}	Output disable time from low level	See Figure 3		23	30	ns
t _{sk(p)}	Pulse skew (tpHL - tpLH)	See Figure 2		4	6	ns
tt	Transition time	See Figure 1		3	10	ns



SLLS171G - OCTOBER 1993 - REVISED MARCH2009

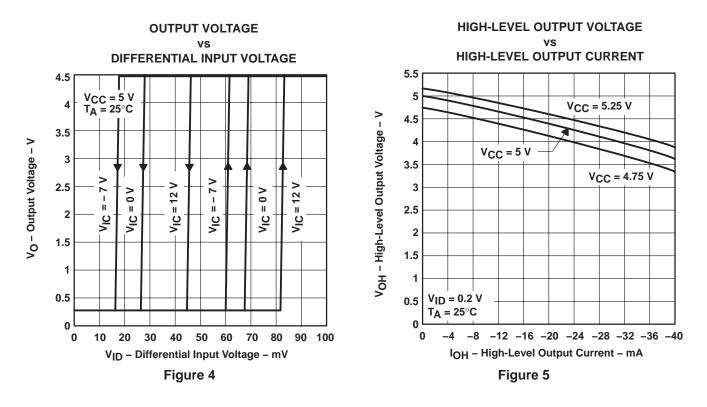
PARAMETER MEASUREMENT INFORMATION


TEST CIRCUIT

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_{f} \le 6$ ns, $t_{f} \le 6$ ns, $Z_{O} = 50 \Omega$.
 - B. \dot{C}_L includes probe and jig capacitance.
 - C. All diodes are 1N916 or equivalent.

Figure 2. t_{PHZ} and t_{PZH} Test Circuit and Voltage Waveforms

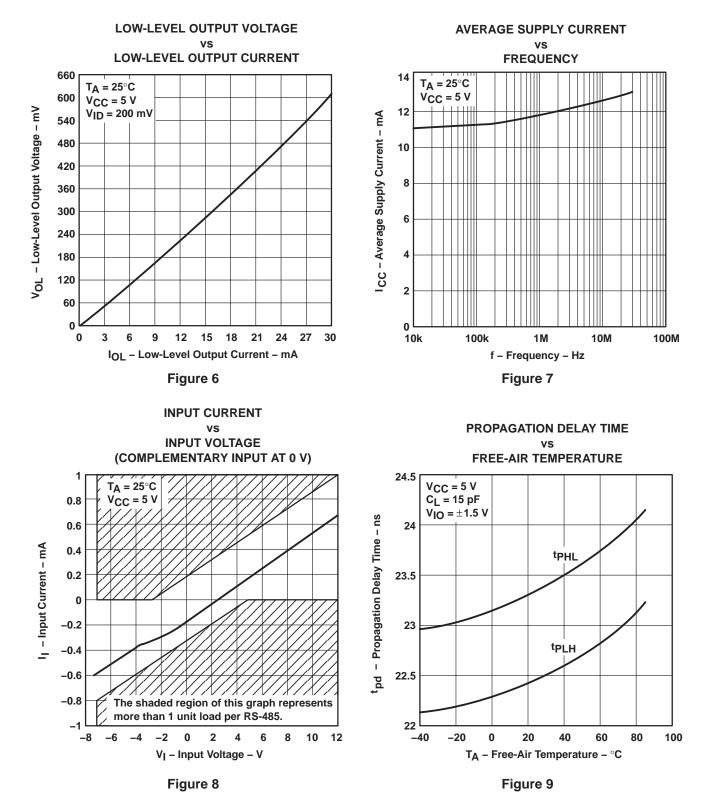
SLLS171G – OCTOBER 1993 – REVISED MARCH2009



TEST CIRCUIT

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_{f} \le 6$ ns, $t_{f} \le 6$ ns, $Z_{O} = 50 \Omega$.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N916 or equivalent.

Figure 3. tPZL and tPLZ Test Circuit and Voltage Waveforms



6

SLLS171G - OCTOBER 1993 - REVISED MARCH2009

TYPICAL CHARACTERISTICS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN65LBC175D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175	Samples
SN65LBC175DG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175	Samples
SN65LBC175DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175	Samples
SN65LBC175DRG4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175	Samples
SN65LBC175DW	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175	Samples
SN65LBC175DWG4	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175	Samples
SN65LBC175DWR	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175	Samples
SN65LBC175N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN65LBC175N	Samples
SN75LBC175D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC175	Samples
SN75LBC175DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC175	Samples
SN75LBC175N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN75LBC175N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

www.ti.com

PACKAGE OPTION ADDENDUM

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

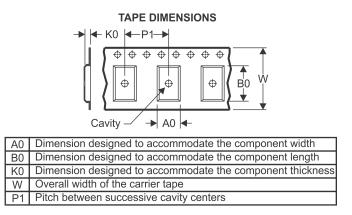
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN75LBC175 :

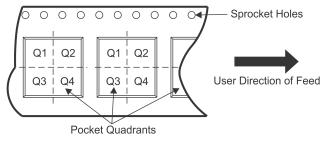
• Military : SN55LBC175

NOTE: Qualified Version Definitions:

• Military - QML certified for Military and Defense Applications

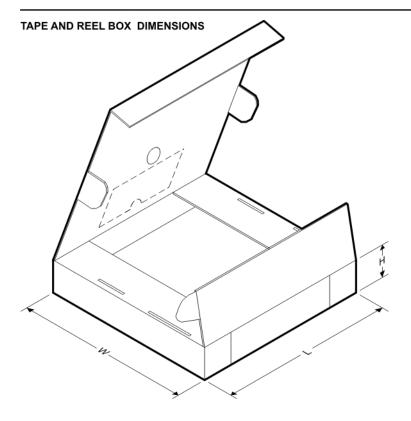

PACKAGE MATERIALS INFORMATION

Texas **NSTRUMENTS**


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

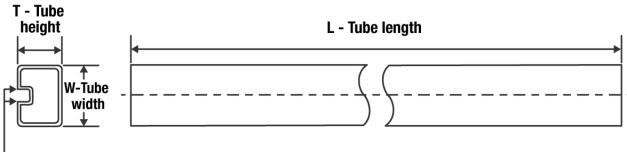

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LBC175DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN65LBC175DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
SN75LBC175DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2022

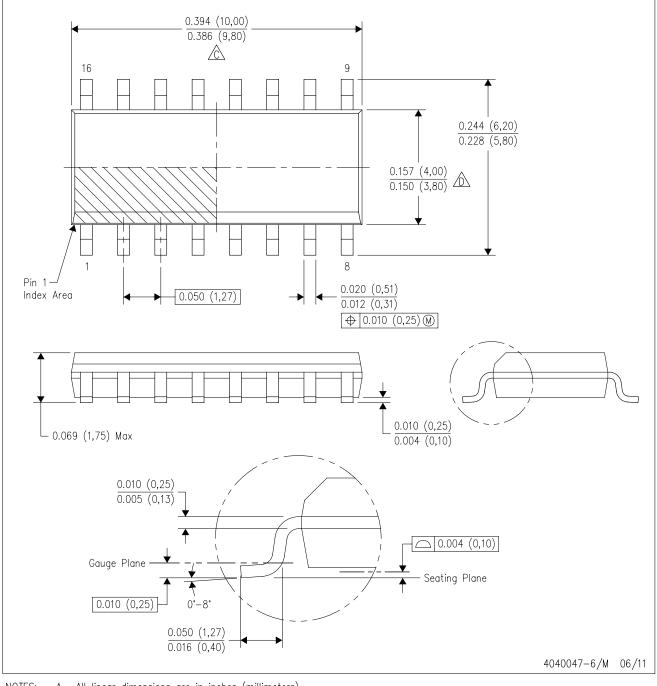
*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LBC175DR	SOIC	D	16	2500	340.5	336.1	32.0
SN65LBC175DWR	SOIC	DW	16	2000	350.0	350.0	43.0
SN75LBC175DR	SOIC	D	16	2500	340.5	336.1	32.0

www.ti.com

5-Jan-2022

TUBE



-	B	-	Alignment	groove	width
---	---	---	-----------	--------	-------

*All dimensions are nominal								
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN65LBC175D	D	SOIC	16	40	505.46	6.76	3810	4
SN65LBC175D	D	SOIC	16	40	507	8	3940	4.32
SN65LBC175DG4	D	SOIC	16	40	505.46	6.76	3810	4
SN65LBC175DG4	D	SOIC	16	40	507	8	3940	4.32
SN65LBC175DW	DW	SOIC	16	40	506.98	12.7	4826	6.6
SN65LBC175DWG4	DW	SOIC	16	40	506.98	12.7	4826	6.6
SN65LBC175N	Ν	PDIP	16	25	506	13.97	11230	4.32
SN75LBC175D	D	SOIC	16	40	507	8	3940	4.32
SN75LBC175D	D	SOIC	16	40	505.46	6.76	3810	4
SN75LBC175N	Ν	PDIP	16	25	506	13.97	11230	4.32

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

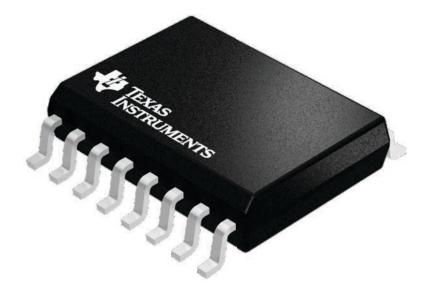
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around 4211283-4/E 08/12

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DW 16

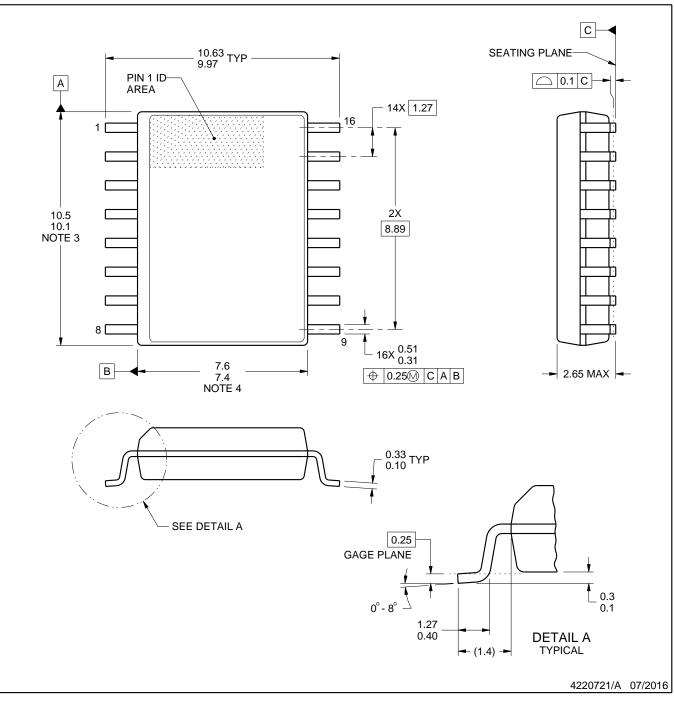

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016A

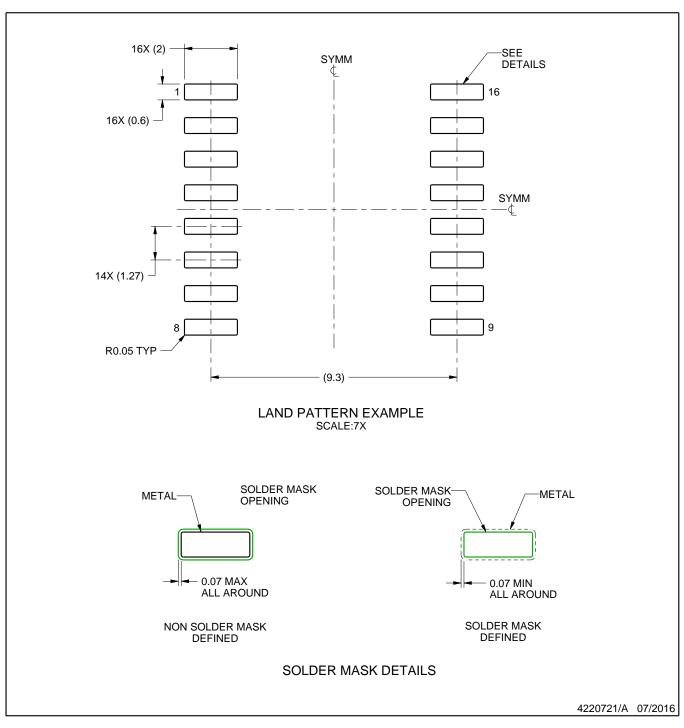
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

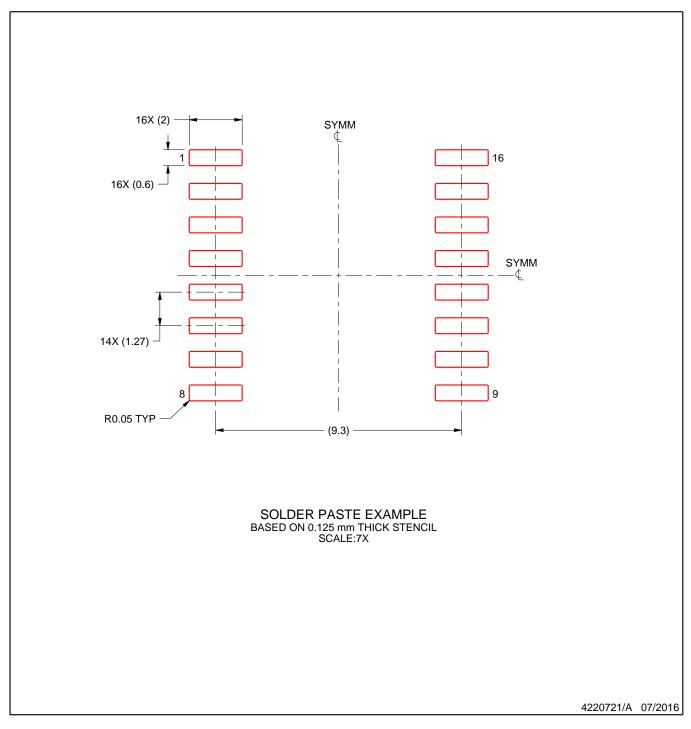
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016A

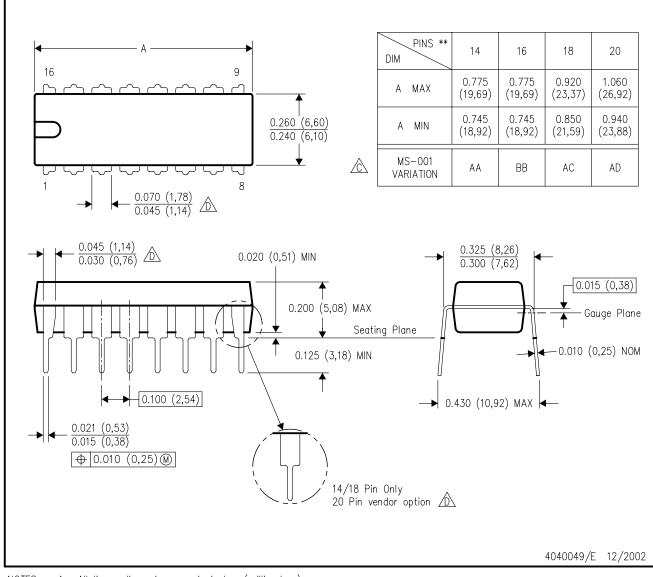
EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated