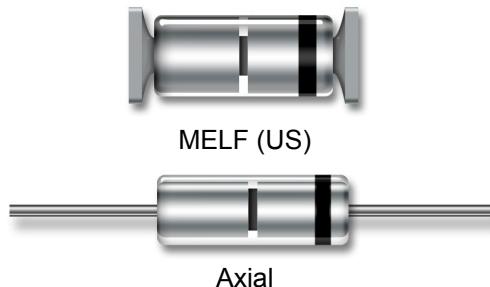


1N66xx Series



Switching Diodes

Rev. V6

Features

- JAN, JANTX, JANTXV and JANS available per MIL-PRF-19500/578 &/609
- Non-Cavity Glass Package
- Category I Metallurgically Bonded
- Replacement for 1N4148-1, 1N4150-1, 1N914
- Very Low Capacitance
- Ultra Fast Recovery Time

Electrical Specifications

Part #	V _{BR} @ I _R		V _{RWM}	V _{FR} / t _{FR}		C _{T1}	C _{T2}	trr
				@ I _F = 200 mA		V _R = 0.0 V	V _R = 1.5 V	I _R = 10 mA, I _F = 10 mA
	V(pk)	μA		V(pk)	ns	pF	pF	ns
1N6638, U & US	150	100	125	5	20	2.5	2.0	4.5
1N6639, U & US	100	10	75	5	10	2.5	—	4
1N6640, U & US	75	10	50	5	10	2.5	—	4
1N6641, U & US	75	10	50	5	10	3.0	—	5
1N6642, U & US	100	100	75	5	20	5.0	2.8	5
1N6643, U & US	75	100	50	5	20	5.0	2.8	6

Part #	I _R				V _F @ I _F				I _F
	V _R = 20 V	V _R = V _{RWM}	V _R = 20 V T _A = +150°C	V _R = V _{RWM} , T _A = +150°C			T _A = +150°C	T _A = -55°C	
							V	V	
	nA	nA	μA	μA	Min.	Max.	Max.	Max.	(pulsed)
1N6638, U & US	35	500	50	100	—	1.1 0.8	— 0.65	1.2 —	200 10
1N6639, U & US	—	100	—	90	—	1.2	—	1.3	500
1N6640, U & US	—	100	—	90	0.54 0.76 0.82 0.87	0.62 0.86 0.92 1.0	— — — —	— — — 1.1	1 50 100 200
1N6641, U & US	—	100	—	90	0.87	1.1	—	1.2	200
1N6642, U & US	25	500	50	100	—	0.8 1.2	0.8 —	— 1.2	10 100
1N6643, U & US	50	500	75	100	—	0.8 1.2	0.8 —	— 1.4	10 100

1

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

For further information and support please visit:
www.vptcomponents.com

Absolute Maximum Ratings^{1,2}

Parameter	Absolute Maximum
Operating Temperature	-65°C to +175°C

1. Exceeding any one or combination of these limits may cause permanent damage to this device.
2. VPT Components does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

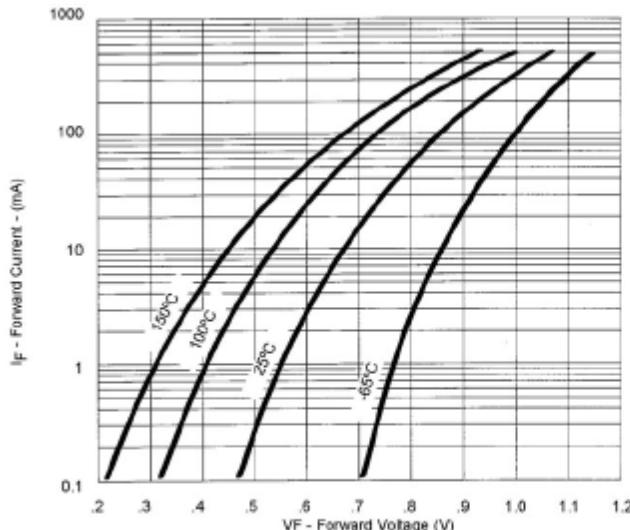
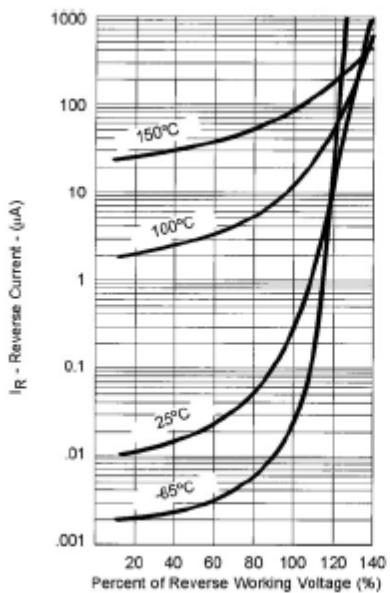
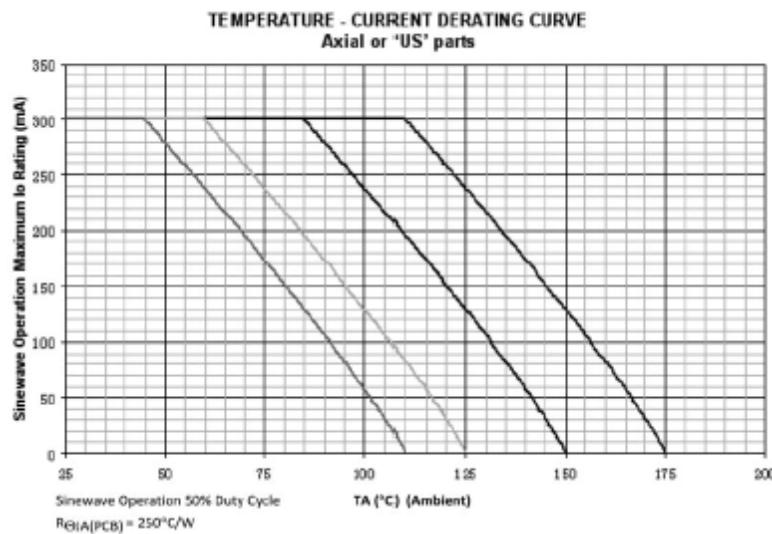
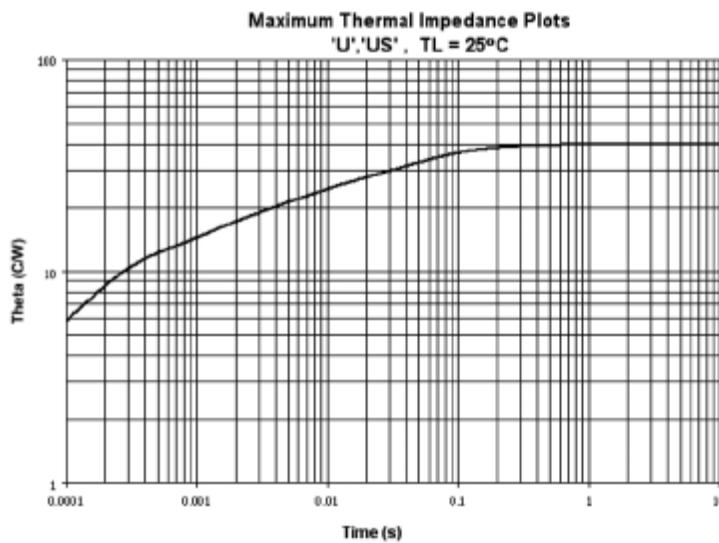


FIGURE 3
Typical Forward Current vs
Forward Voltage


FIGURE 4
Typical Reverse Current vs
Reverse Voltage

Note:
All temperatures shown on graphs are
junction temperatures

NOTES:

1. All devices are capable of operating at $\leq TJ$ specified on this curve. Any parallel line to this curve will intersect the appropriate current for the desired maximum TJ allowed.
2. Derate design curve constrained by the maximum junction temperatures and current rating specified. (See 1.3.)
3. Derate design curve chosen at $TJ \leq 150^{\circ}\text{C}$, where the maximum temperature of electrical test is performed.
4. Derate design curves chosen at $TJ \leq 125^{\circ}\text{C}$, and 110°C to show current rating where most users want to limit TJ in their application.

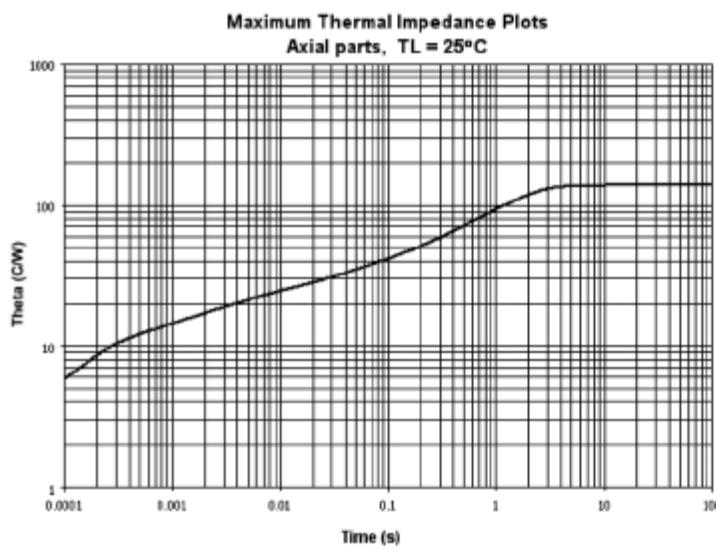


FIGURE 6. Thermal impedance – all U and US devices.

$R_{\Theta JL} = 40^{\circ}\text{C}/\text{W}$

$Z_{\Theta JX} = 25^{\circ}\text{C}/\text{W}$ maximum at $t_H = 10\text{ms}$

Lead spacing = .375 inch mounted to an infinite heat dissipater

FIGURE 7. Thermal impedance (axial leads).

$R_{\Theta JL} = 150^{\circ}\text{C}/\text{W}$

$Z_{\Theta JX} = 25^{\circ}\text{C}/\text{W}$ maximum at $t_H = 10\text{ms}$

Lead spacing = 0 inch mounted to an infinite heat dissipater

Outline Drawing

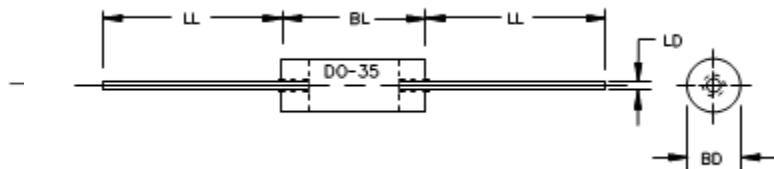


FIGURE 1

Symbol	Dimensions				Notes	
	Inches		Millimeters			
	Min	Max	Min	Max		
BD	.056	.080	1.42	2.03	2	
BL	.130	.180	3.30	4.57		
LD	.018	.022	.046	.056	3	
LL	1.00	1.50	25.40	38.10		

LEADED DESIGN DATA

CASE: D-5D, Hermetically sealed glass case, per MIL-PRF-19500/578 & /609

LEAD FINISH: Tin/Lead

LEAD MATERIAL: Copper clad steel

POLARITY: Cathode end is banded.

PACKAGE WEIGHT: 0.150g

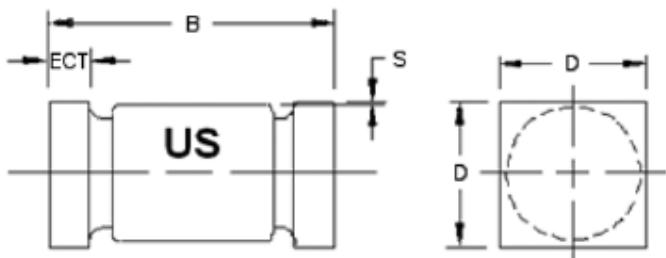


FIGURE 2

Symbol	Dimensions			
	Inches		Millimeters	
	Min	Max	Min	Max
D	.070	.085	1.78	2.16
B	.165	.195	4.19	4.95
ECT	.019	.028	.048	0.71
S	.003		0.08	

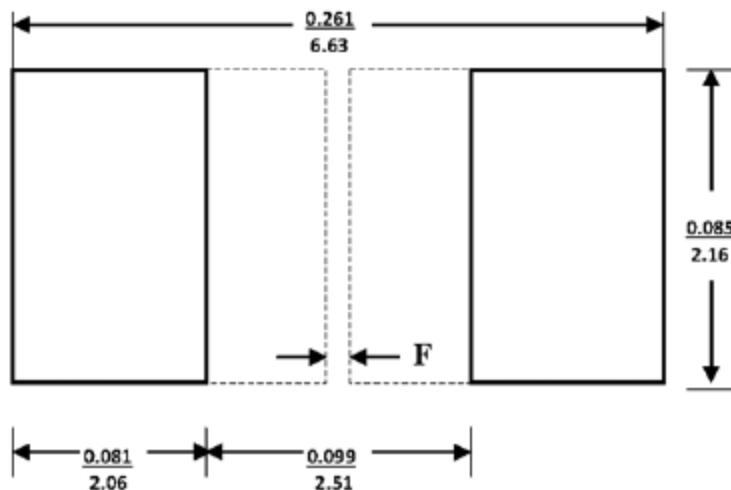
U & US DESIGN DATA

CASE: D-5D, Hermetically sealed glass case, per MIL-PRF-19500/578 & /609

LEAD FINISH: Tin/Lead

END CAP MATERIAL (U, US): Copper
POLARITY: Cathode end is banded.

PACKAGE WEIGHT: 0.095g


MOUNTING SURFACE SELECTION: The Axial Coefficient of Expansion (COE) of this device is approximately +4PPM/°C. The COE of the Mounting Surface System should be selected to provide a suitable match with this device.

NOTES:

1. Dimensions are in inches. Millimeters are given for general information only.
2. Dimension BD shall be measured at the largest diameter.
3. The specified lead diameter applies in the zone between .050 inch (1.27 mm) from the diode body to the end of the lead. Outside of this zone lead shall not exceed BD.
4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
5. U-suffix parts are structurally identical to the US-suffix parts.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

**Suggested Minimum Footprints
D-5D (D-BODY) U, US DIODES**

FIGURE 8

NOTES:

1. Dimensions are in inches / mm.
2. The dimensions listed will match the device terminals based on worst-case package outline drawings and assuming accuracy of device placements is within 0.005 inches. Footprints also provide for solder fillets at the outer ends of the device at least as wide as the terminals.
3. F designates recommendation to fill unused area with an extended copper pad in order to reduce the CTE difference between the device and the PC board. The extended area may be3 coated with a solder mask. the width of F depends upon your PCB design rules.

VPT Components All rights reserved.

Information in this document is provided in connection with VPT Components' products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components' Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS' PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components' products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components' customers using or selling VPT Components' products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.