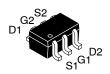


Digital FET, Dual P-Channel FDG6304P

General Description

These dual P-Channel logic level enhancement mode field effect transistors are produced using **onsemi** proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for bipolar digital transistors and small signal MOSFETs.


Features

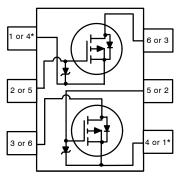
- -25 V, -0.41 A Continuous, -1.5 A Peak
 - $R_{DS(ON)} = 1.1 \Omega @ V_{GS} = -4.5 V$
 - $R_{DS(ON)} = 1.5 \Omega @ V_{GS} = -2.7 V$
- Very Low Level Gate Drive Requirements Allowing Direct Operation in 3 V Circuits (V_{GS(th)} < 1.5 V)
- Gate-Source Zener for ESD Ruggedness (>6 kV Human Body Model)
- Compact Industry Standard SC70–6 Surface Mount Package
- These Devices are Pb-Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter		FDG6304P	Units
V_{DSS}	Drain-Source Voltage		-25	V
V_{GSS}	Gate-Source Voltage		-8	V
I _D	Drain/Output Current	Continuous	-0.41	Α
		Pulsed	-1.5	
P _D	Maximum Power Dissipation (Note 1)		0.3	W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100 pF / 1500 Ω)		6.0	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

SC-88/SC70-6/SOT-363 CASE 419B-02


MARKING DIAGRAM

04

- = Specific Device Code
- M = Assembly Operation Month

PIN CONNECTIONS

*The pinouts are symmetrical; pin 1 and 4 are interchangeable.

Units inside the carrier can be of either orientation and will not affect the functionality of the device.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	415	°C/W

 $^{1. \ \} R_{\theta JA} \ is \ the \ sum \ of \ the \ junction-to-case \ and \ case-to-ambient \ thermal \ resistance \ where \ the \ case \ thermal \ reference \ is \ defined \ as \ the \ solder$ mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. $R_{\theta JA} = 415^{\circ}\text{C/W}$ on minimum pad mounting on FR-4 board in still air.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS	•	•	•		•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-25	_	-	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, Referenced to 25°C	-	-22	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	μΑ
		$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$	-	-	-10	μΑ
I _{GSS}	Gate-Body Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	-	-	100	nA
N CHARACTE	RISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu\text{A}$	-0.65	-0.82	-1.5	V
$\Delta V_{GS(th)} / \Delta T_{J}$	Gate Threshold Voltage Temperature Coefficient	I_D = -250 μ A, Referenced to 25°C	-	2	-	mV/°C
R _{DS(on)}	Static Drain-Source	V _{GS} = -4.5 V, I _D = -0.41 A	-	0.85	1.1	Ω
On-Resistance	On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -0.41 \text{ A},$ $T_J = 125 ^{\circ}\text{C}$	-	1.2	1.9	
		$V_{GS} = -2.7 \text{ V}, I_D = -0.25 \text{ A}$	_	1.15	1.5	
I _{D(on)}	On-State Drain Current	V _{GS} = -4.5 V, V _{DS} = -5 V	-1.5	-	-	Α
9 _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_D = -0.41 \text{ A}$	-	0.9	-	S
YNAMIC CHA	RACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	_	62	_	pF
C _{oss}	Output Capacitance	7	-	34	_	pF
C _{rss}	Reverse Transfer Capacitance		_	10	-	pF
WITCHING CH	IARACTERISTICS (Note 2)					
t _{D(on)}	Turn-On Delay Time	$V_{DD} = -5 \text{ V}, I_D = -0.5 \text{ A},$	_	7	15	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	-	8	16	ns
t _{D(off)}	Turn-Off Delay Time	7	-	55	80	ns
t _f	Turn-Off Fall Time	7	-	35	60	ns
Qg	Total Gate Charge	$V_{DS} = -5 \text{ V}, I_{D} = -0.41 \text{ A}, V_{GS} = -4.5 \text{ V}$	-	1.1	1.5	nC
Q_{gs}	Gate-Source Charge	V _{GS} = -4.5 V	_	0.31	-	nC
Q_{gd}	Gate-Drain Charge		_	0.29	-	nC
RAIN-SOURC	E DIODE CHARACTERISTICS AND I	IAXIMUM RATINGS				
I _S	Maximum Continuous Source Curren	t	-	-	-0.25	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -0.25 \text{ A (Note 2)}$	-	-0.85	-1.2	٧

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

TYPICAL PERFORMANCE CHARACTERISTICS

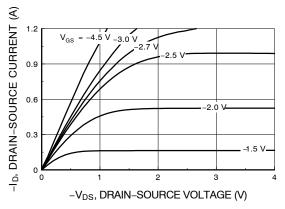


Figure 1. On-Region Characteristics

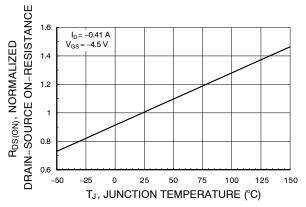


Figure 3. On–Resistance Variation with Temperature

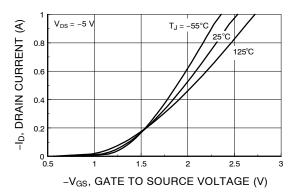


Figure 5. Transfer Characteristics

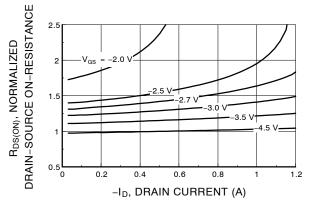


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

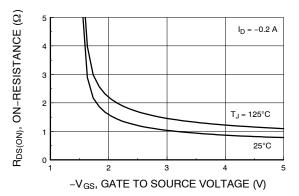


Figure 4. On–Resistance Variation with Gate–to–Source Voltage

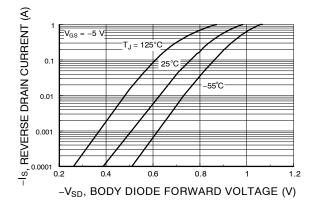


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

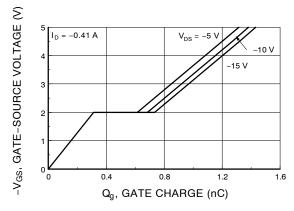


Figure 7. Gate Charge Characteristics

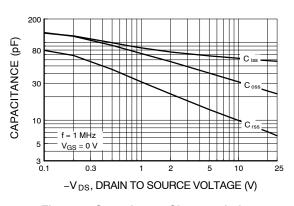


Figure 8. Capacitance Characteristics

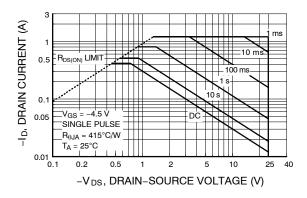
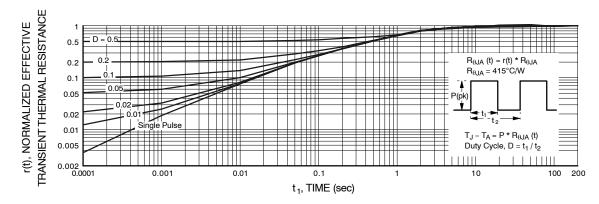



Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

Thermal characterization performed using the conditions described in Note 1. Transient thermal response will change depending on the circuit board design.

Figure 11. Transient Thermal Response Curve

ORDERING INFORMATION

Device Order Number	Device Marking	Package Type	Shipping [†]
FDG6304P	04	SC-88/SC70-6/SOT-363 (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

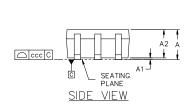
E1

6X 0.30 -

e

В

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**


DATE 18 APR 2024

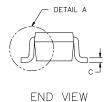
NOTES:

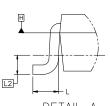
- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
- DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
- DIMENSIONS 6 AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM

MIN

TOP VIEW


∆aaa H A−B


△ bbb C

⊕ ddd M C A−B D

6X 0.66

2.50

DETAIL SCALE 2:1

GENERIC MARKING DIAGRAM*

Α			1.10
A1	0.00		0.10
A2	0.70	0.90	1.00
Ь	0.15	0.20	0.25
С	0.08	0.15	0.22
D		2.00 BSC	;
E	2.10 BSC		
E1	1.25 BSC		
е	0.65 BSC		
L	0.26 0.36 0.46		
L2	0.15 BSC		
aaa	0.15		
bbb	0.30		
ccc	0.10		
ddd	0.10		

MILLIMETERS

NOM

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code

= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

- *Date Code orientation and/or position may vary depending upon manufacturing location.
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.6	SC-88 2.00x1.25x0.90, 0.65P	

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88 2.00x1.25x0.90, 0.65P

CASE 419B-02 ISSUE Z

DATE 18 APR 2024

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 14: PIN 1. VREF 2. GND 3. GND 4. IOUT 5. VEN 6. VCC	STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1	STYLE 16: PIN 1. BASE 1 2. EMITTER 2 3. COLLECTOR 2 4. BASE 2 5. EMITTER 1 6. COLLECTOR 1	STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1	STYLE 18: PIN 1. VIN1 2. VCC 3. VOUT2 4. VIN2 5. GND 6. VOUT1
STYLE 19: PIN 1. I OUT 2. GND 3. GND 4. V CC 5. V EN 6. V REF	STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1	STYLE 22: PIN 1. D1 (i) 2. GND 3. D2 (i) 4. D2 (c) 5. VBUS 6. D1 (c)	STYLE 23: PIN 1. Vn 2. CH1 3. Vp 4. N/C 5. CH2 6. N/C	STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1	STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2	STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE	STYLE 30: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65	SC-88 2.00x1.25x0.90, 0.65P	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales