IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop (FS) Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for half bridge resonant applications. Incorporated into the device is a soft and fast co–packaged free wheeling diode with a low forward voltage.

Features

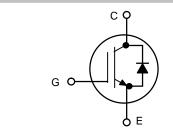
- Low Saturation Voltage using Trench with Fieldstop Technology
- Low Switching Loss Reduces System Power Dissipation
- Low Gate Charge
- Soft, Fast Free Wheeling Diode
- These are Pb-Free Devices

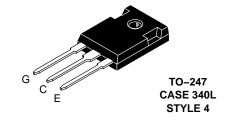
Typical Applications

- Inverter Welding
- UPS Systems

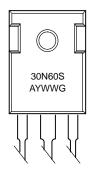
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	600	V
Collector current @ T _C = 25°C @ T _C = 100°C	lc	60 30	A
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	120	Α
Diode forward current @ T _C = 25°C @ T _C = 100°C	I _F	60 30	A
Diode pulsed current, T _{pulse} limited by T _{Jmax}	I _{FM}	120	Α
Gate-emitter voltage	V_{GE}	±20	V
Power Dissipation @ T _C = 25°C @ T _C = 100°C	P _D	189 76	W
Operating junction temperature range	TJ	–55 to +150	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


http://onsemi.com

30 A, 600 V V_{CEsat} = 1.9 V E_{off} = 0.54 mJ

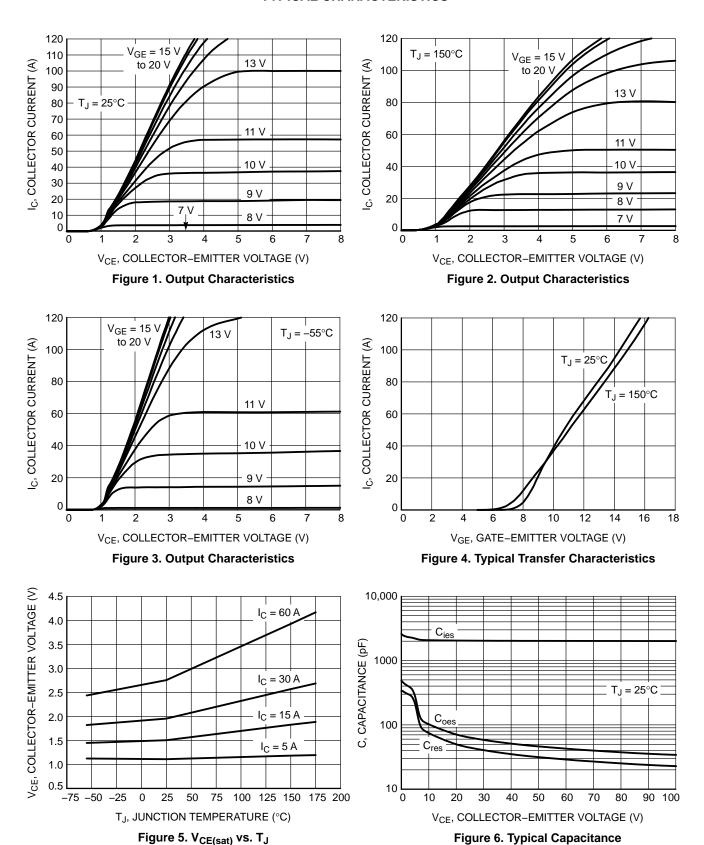
MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB30N60SWG	TO-247 (Pb-Free)	30 Units / Rail


THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ heta JC}$	0.66	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ heta JC}$	2.73	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC	•	•		-		•
Collector–emitter breakdown voltage, gate–emitter short–circuited	$V_{GE} = 0 \text{ V}, I_{C} = 500 \mu\text{A}$	V _{(BR)CES}	600	_	-	V
Collector–emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A V _{GE} = 15 V, I _C = 30 A, T _J = 150°C	V _{CEsat}	_ _	1.9 2.6	2.2 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_{C} = 150 \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	V _{GE} = 0 V, V _{CE} = 600 V V _{GE} = 0 V, V _{CE} = 600 V, T _J = 150°C	I _{CES}	- -	_ _	0.2 2	mA
Gate leakage current, collector–emitter short–circuited	V _{GE} = 20 V , V _{CE} = 0 V	I _{GES}	-	-	100	nA
DYNAMIC CHARACTERISTIC						
Input capacitance		C _{ies}	-	2040	-	pF
Output capacitance	$V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	C _{oes}	-	70	_	
Reverse transfer capacitance	1	C _{res}	-	50	_	
Gate charge total		Q_g		90		nC
Gate to emitter charge	$V_{CE} = 480 \text{ V}, I_{C} = 30 \text{ A}, V_{GE} = 15 \text{ V}$	Q _{ge}		19		
Gate to collector charge	1	Q _{gc}		45		
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD	•				•
Turn-on delay time		t _{d(on)}		57		ns
Rise time	1	t _r		32		
Turn-off delay time	$T_J = 25^{\circ}C$ $V_{CC} = 400 \text{ V, } I_C = 30 \text{ A}$	t _{d(off)}		109		
Fall time	$R_g = 10 \Omega$ $V_{GE} = 0 \text{ V/ } 15 \text{ V}$	t _f		91		
Turn-on switching loss	VGE = 0 V/ 13 V	E _{on}		0.75		mJ
Turn-off switching loss	1	E _{off}		0.54		mJ
Turn-on delay time		t _{d(on)}		56		ns
Rise time	1	t _r		34		
Turn-off delay time	$T_J = 150$ °C $V_{CC} = 400 \text{ V, } I_C = 30 \text{ A}$	t _{d(off)}		113		
Fall time	$R_g = 10 \Omega$ $V_{GE} = 0 \text{ V/ } 15 \text{ V}$	t _f		172		
Turn-on switching loss	v GE = 0 v/ 13 v	E _{on}		0.91		mJ
Turn-off switching loss	1	E _{off}		0.87		mJ
DIODE CHARACTERISTIC						
Forward voltage	V _{GE} = 0 V, I _F = 30 A V _{GE} = 0 V, I _F = 30 A, T _J = 150°C	V _F		2.3 2.5	2.5	V
Reverse recovery time	T _J = 25°C	t _{rr}		200		ns
Reverse recovery charge	I _F = 30 Å, V _R = 400 V di _F /dt = 200 A/μs	Q _{rr}		1000		nc
Reverse recovery current	1	I _{rrm}		9		Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

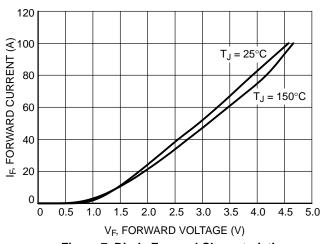


Figure 7. Diode Forward Characteristics

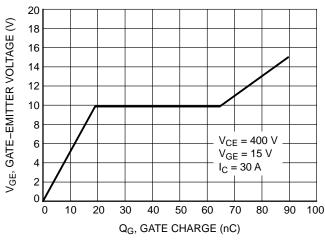


Figure 8. Typical Gate Charge

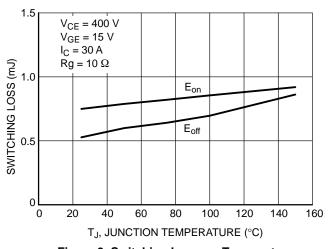


Figure 9. Switching Loss vs. Temperature

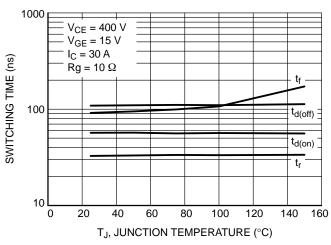


Figure 10. Switching Time vs. Temperature

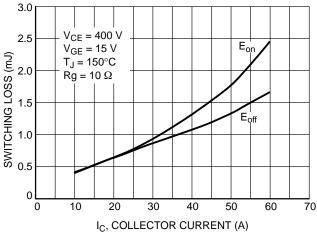


Figure 11. Switching Loss vs. I_C

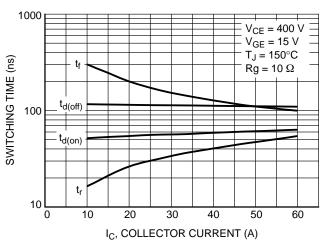


Figure 12. Switching Time vs. I_C

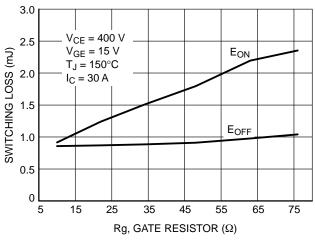


Figure 13. Switching Loss vs. Rg

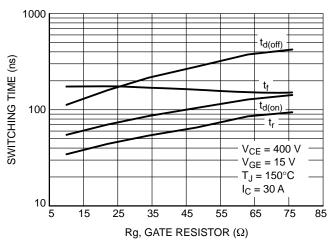


Figure 14. Switching Time vs. Rg

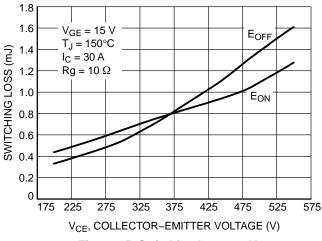


Figure 15. Switching Loss vs. V_{CE}

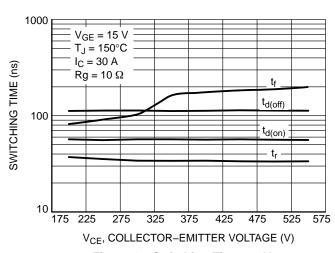


Figure 16. Switching Time vs. V_{CE}

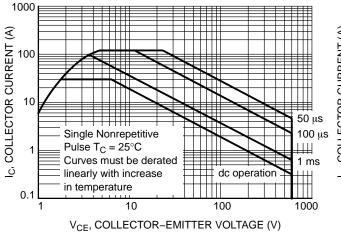


Figure 17. Safe Operating Area

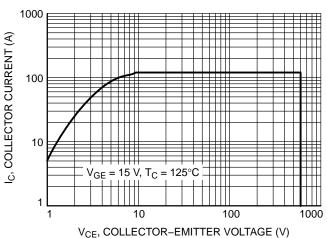


Figure 18. Reverse Bias Safe Operating Area

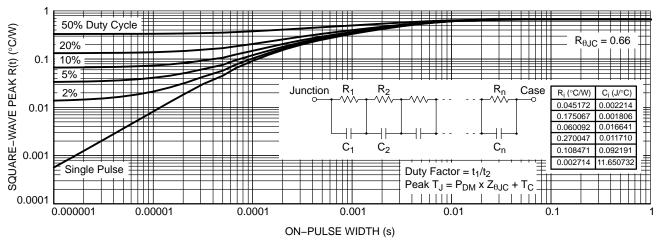


Figure 19. IGBT Die Self-heating Square-wave Duty Cycle Transient Thermal Response

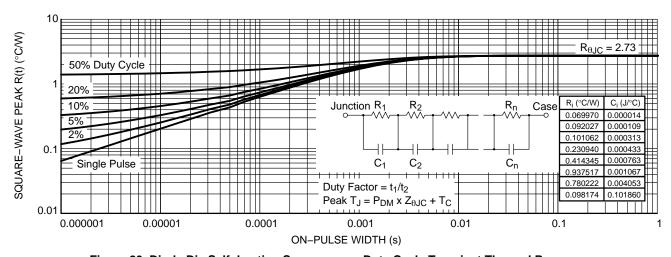
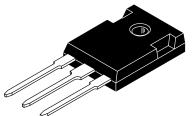
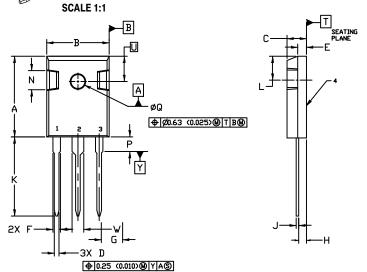
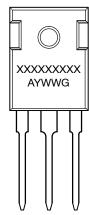



Figure 20. Diode Die Self-heating Square-wave Duty Cycle Transient Thermal Response


TO-247 CASE 340L ISSUE G

DATE 06 OCT 2021


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	HES
DIM	MIN.	MAX.	MIN.	MAX.
Α	20.32	21.08	0.800	0.830
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
К	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15 BSC		0.242	BSC
W	2.87	3.12	0.113	0.123

GENERIC MARKING DIAGRAM*

 STYLE 1:
 STYLE 2:

 PIN 1. GATE
 PIN 1.

 2. DRAIN
 2.

 3. SOURCE
 3.

 4. DRAIN
 4.

STYLE 5:

PIN 1. CATHODE 2. ANODE

3. GATE 4. ANODE PIN 1. ANODE 2. CATHODE (S) 3. ANODE 2 4. CATHODES (S)

STYLE 6:

STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 4: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR XXXXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

PIN 1. MAIN TERMINAL 1

2. MAIN TERMINAL 2

3. GATE

4. MAIN TERMINAL 2

4. MAIN TERMINAL 2

4. MAIN TERMINAL 2

5. GATE

4. MAIN TERMINAL 2

6. This information is generic. Please refer to device data sheet for actual part marking. Pb—Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB15080C	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales